

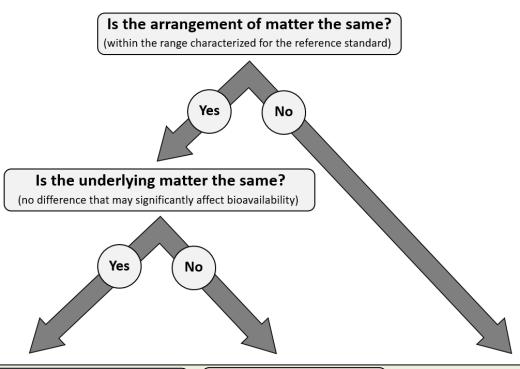
Cutaneous Pharmacokinetics-Based Techniques: Translating Scientific Advances to Regulatory Methods

FDA Virtual Workshop: Formulation Characterization and Cutaneous Pharmacokinetics to Facilitate Topical Product Development

Session 2: Development of Cutaneous PK Based Approaches

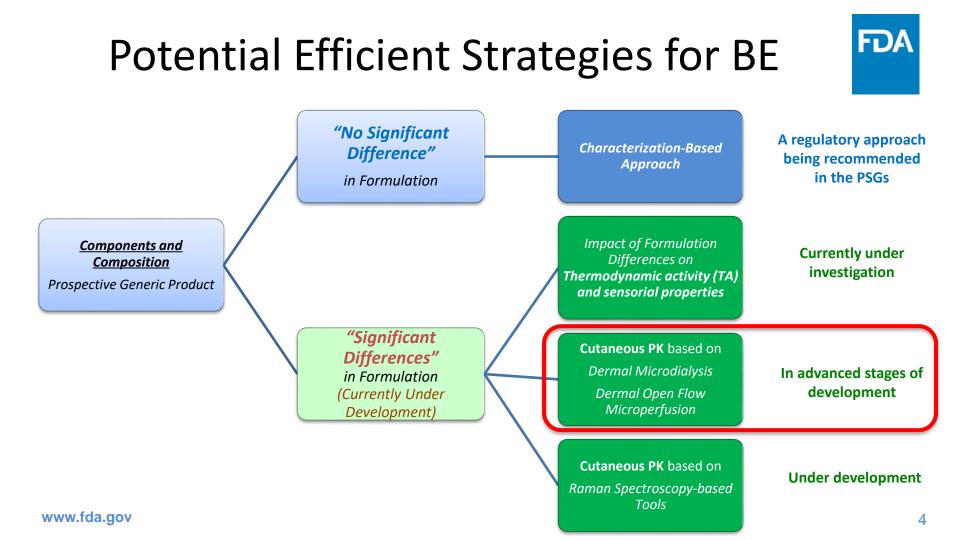
Tannaz Ramezanli, PharmD, PhD

Senior Pharmacologist Office of Research and Standards Office of Generic Drugs | CDER | U.S. FDA November 3, 2022


Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Bioequivalence (BE) for Topical Products


FDA

Generally eligible for characterization-based
bioequivalence approaches in current PSGsIn vivo cutaneous PK
dOFM/dMD BE studies?Generally eligible for traditional in vivo
bioequivalence approaches in current PSGs

www.fda.gov

Adapted from Guidance for Industry: Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs (October 2022)

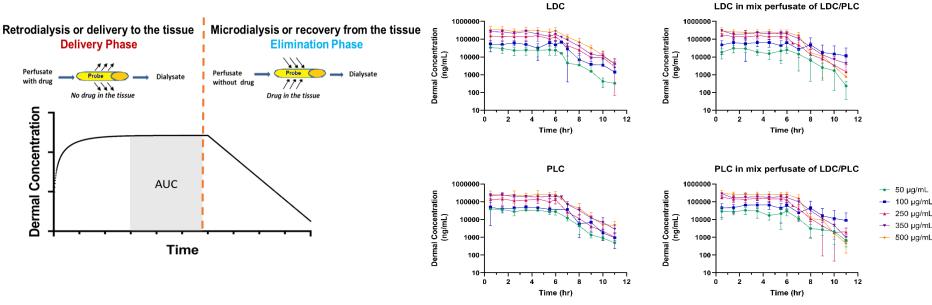
GDUFA-Funded Research Awards

Novel methodologies (dermal microdialysis (dMD) and dermal open flow microperfusion (dOFM)) to assess the bioavailability (BA) and BE of topical dermatological drug products:

- Joanneum Research
 - U01FD004946, 2013-2016
 - U01FD005861, 2016-2022
 - U01FD007669, 2022
- Long Island University (LIU)
 - U01FD005862, 2016-2020
 - U01FD006930, 2020

www.fda.gov

Overview of the Studies


Technique	Drug products	Drug characteristics	Model	Outcome
dOFM	Acyclovir creams	Hydrophilic, minimally protein bound	Human	Optimization of the study design and conclusive assessment of BE
dOFM	Lidocaine prilocaine creams and gel	Relatively lipophilic, protein bound	Human	Optimization of the study design, statistical analysis and conclusive assessment of BE
dMD	Metronidazole gels and creams	Hydrophilic, minimally protein bound	Pig Rabbit	Method development and qualification, testing different study designs, and BE assessment
dOFM and dMD	Lidocaine prilocaine creams	Relatively lipophilic, protein bound	Human	Systemic cross talk at high dose, performance of dMD vs dOFM
dOFM	Diclofenac sodium gel and solution	Relatively lipophilic, highly protein bound	Human	Optimization of the study design and data analysis is under review
dMD	Lidocaine prilocaine	Relatively lipophilic, highly protein bound	Rabbit	Assessment of dermal disposition independent of absorption

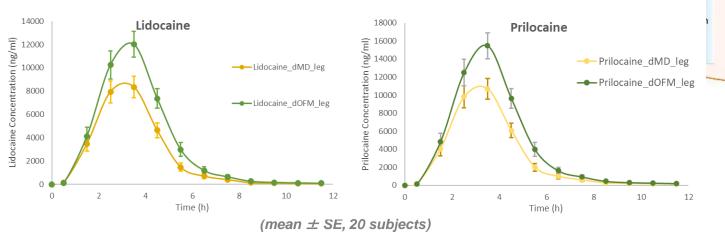
Sensitivity and Applicability

- Can dMD and dOFM measure and distinguish bioavailability of two similarly structured drug molecules?
- A closer look at the dermal disposition of topical drugs

Dermal Infusion Followed by Microdialysis

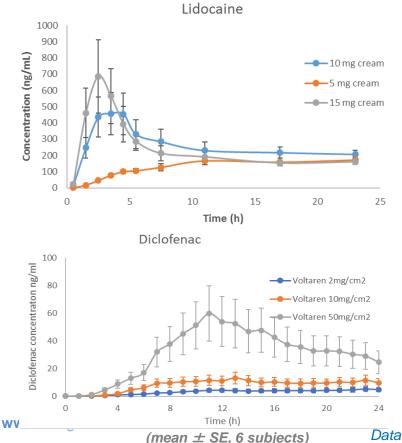
(mean \pm SD, 4 rabbits)

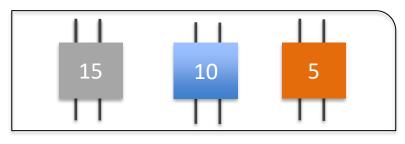
The dermal infusion approach demonstrates that the dermal disposition of lidocaine (LDC) and prilocaine (PLC) is independent of the dose delivered directly to the dermis over a range of therapeutically relevant concentrations.


Senemar et al. 2022 ASCPT poster, FDA Award U01FD006930

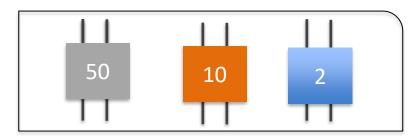
dOFM vs. dMD

111 111


In a study performed by Joanneum Research, in 20 subjects both dOFM and dMD were able to capture PK profiles for lidocaine and prilocaine from EMLA[®] cream.

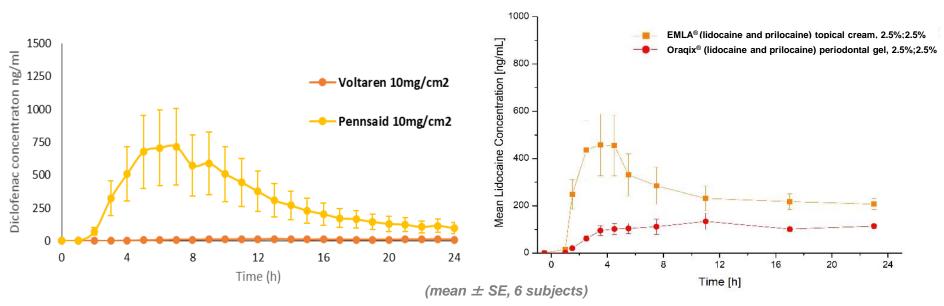

www.fda.gov

Data provided courtesy of Dr. Frank Sinner, Award U01FD005861


Discrimination Capability

Changes in cutaneous bioavailability with different dose amounts

Target dose

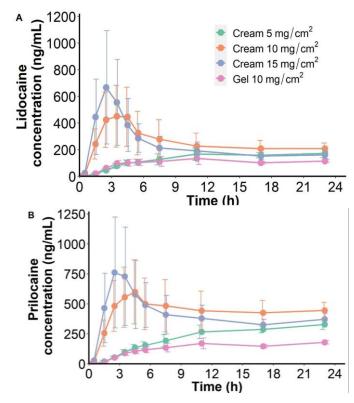


Data provided courtesy of Dr. Frank Sinner, Award U01FD005861

FDA

Discrimination Capability

Changes in cutaneous bioavailability by using an altered formulation


www.fda.gov

Data provided courtesy of Dr. Frank Sinner, Award U01FD005861

FDA

Quantitative Assessment of Pilot Studies

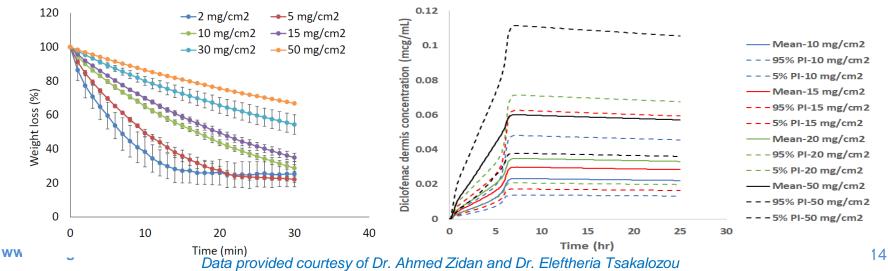
The cutaneous PK profiles were considered to be discriminated if $f_1 > 15$ or $f_2 < 50$ and with bootstrap analysis when the 90% confidence interval (CI) for $f_1 > 15$ or for $f_2 < 50$.

D	Point Estimate			Bootstrap (n=1000)				
Dose vs Cream 10 mg/cm ²	Percent conc profile		Percent AUC profile		Percent conc profile		Percent AUC profile	
ing/ciii	Lidocaine	Prilocaine	Lidocaine	Prilocaine	Lidocaine	Prilocaine	Lidocaine	Prilocaine
f ₁								
Cream 5 mg/cm ² (n=12)	65.5	63.4	64.6	63.1	63.1 (48.7 – 74 2)	61.3 (47.3 – 72 4)	62.1 (47.1 – 73.0)	61.0 (47.3 – 71.8)
Cream 15 mg/cm ² (n=12)	30.5	24.1	14.6	13.3	39.4 (21.6 – 73.4)	33.2 (17.4 – 62.2)	30.3 (11.4 – 68.0)	25.7 (10.1 – 56.4)
Gel 10 mg/cm ² (n=6)	70.2	76.0	69.4	75.7	67.2 (49.0 – 80.6)	74.2 (61.9 – 83.0)	65.7 (43.4 – 80.6)	73.5 (60.0 – 84.2)
f ₂								
Cream 5 mg/cm ² (n=12)	15.6	15.7	27.6	29.8	16.8 (14.8 – 19.9)	16.6 (13.9 – 22.7)	29.0 (23.6 – 37.5)	31.0 (25.8 – 38.4)
Cream 15 mg/cm ² (n=12)	39.6	38.8	60.7	65.7	35.2 (27.9 – 42.3)	35.2 (27.2 – 43.9)	48.7 (33.1 – 65.1)	53.7 (38.2 – 70.2)
Gel 10 mg/cm ² (n=6)	15.5	13.0	25.3	24.6	17.0 (14.0 – 22.3)	13.6 (11.0 – 18.6)	27.3 (20.9 – 38.2)	25.5 (21.6 – 31.1)

www.fda.gov

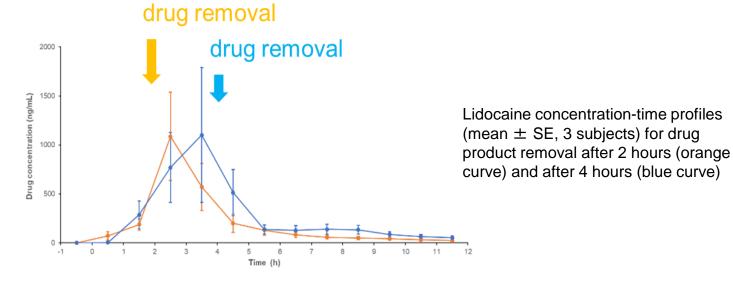
(mean \pm SE, 6 subjects)

Shukla et al. 2022 ASCPT poster

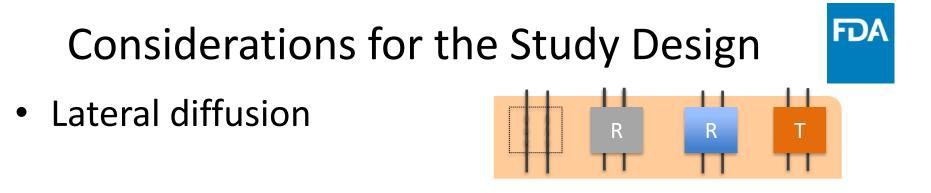

Considerations for the Study Design

- Product dose
 - Case study for diclofenac sodium topical gel, 1%

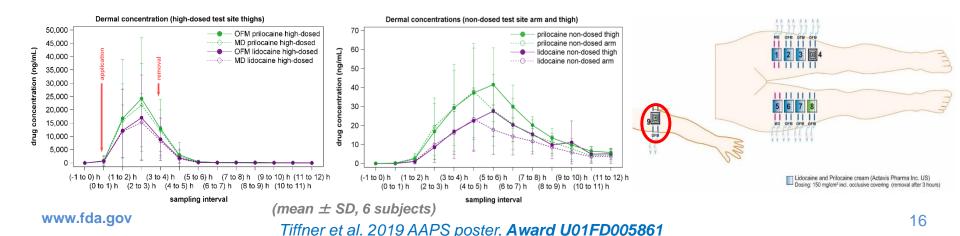
Evaluating the metamorphosis of different dose amounts



Considerations for the Study Design



- Study duration and application duration
 - Case study for lidocaine prilocaine topical cream, 2.5%;2.5%



www.fda.gov

Data provided courtesy of Dr. Frank Sinner, Award U01FD005861

• Systemic absorption and systemic redistribution

Overcoming the Limitations

- Use of portable pumps
- Control and reduce the variabilities:
 - Study controls: application site, dose, application technique, probe depth, barrier integrity, flow rates
- Method development and validation strategies
- Optimizing the BE study design
- Development of data analysis strategies

What We Have Learned/Demonstrated

- FDA
- dMD and dOFM can detect differences in dermal drug concentration.
- dMD and dOFM may be used for evaluating BA and BE of hydrophilic and hydrophobic topical drugs.
- dMD and dOFM were both capable of assessing the BA of lidocaine and prilocaine.
- In our dMD and dOFM studies the lateral diffusion and systemic redistribution have been minimal compared to the drug concentrations detected at the topical applicate sites.
- A pilot study can be conducted to assist with optimization of the BE study design (e.g., selection of dose, sampling duration, application duration, and estimation of subject number)

Potential Challenges to Address

- Access to the techniques and expertise
- Bioanalytical method validation
- Availability of standardized methodologies for qualification
- Appropriate analysis of the data
- Cost

Summary and Conclusions

- FDA is investigating novel alternative, scientifically valid methods, including in vitro and in vivo approaches, to support the assessment of BE for topical drug products that have compositional differences compared to the reference standard.
- Cutaneous PK-based approaches using dOFM and dMD have the potential to support a demonstration of BE when the proposed method is optimized and controlled to be adequately discriminating and reproducible.
- The design of the pivotal BE study using dOFM and dMD can be informed by conducting a pilot study supported by in vitro/in silico data.
- To propose an alternative BE approach for a prospective generic topical product using a dermal sampling methodology, you can submit a pre-ANDA product development meeting request to the Office of Generic Drugs.

Acknowledgements

U.S. Food & Drug Administration

- Sam Raney, PhD
- Priyanka Ghosh, PhD
- Sagar Shukla, PharmD, PhD
- Ying Jiang, PhD
- Ahmed Zidan, PhD
- Eleftheria Tsakalozou, PhD
- Ghaled Hamad, PhD
- Markham Luke, MD PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for research projects was made possible, in part, by the U.S. FDA through:

GDUFA Award U01FD004946, Joanneum Research GDUFA Award U01FD005861, Joanneum Research

• Dr. Frank Sinner

GDUFA Award U01FD005862, Long Island University GDUFA Award U01FD006930, Long Island University

• Dr. Grazia Stagni

Tannaz Ramezanli, PharmD, PhD

tannaz.ramezanli@fda.hhs.gov