St SimulationsPlus

Cognigen DILIsym Services Lixoft

Building Mechanistic IVIVC

Viera Lukacova

viera.lukacova@simulations-plus.com

October 28, 2022

What is an

In Vitro - In Vivo Correlation (IVIVC)?

Working definition:

"A predictive mathematical treatment describing the relationship between an *in vitro* property of a dosage form (e.g., the rate or extent of drug release) and a relevant *in vivo* response (e.g., plasma concentration-time data)"

FDA Guidance for Industry Extended Release Solid Oral Dosage Forms: Development, Evaluation, and Application of *In Vitro/In Vivo* Correlations (1997)

What is the purpose of an IVIVC?

- To reduce regulatory burden
- For dissolution method development:
 - Which *in vitro* method best correlates with a deconvoluted *in vivo* profile?
- For formulation design:
 - How do I develop my formulation to produce an *in vitro* dissolution rate that will achieve bioequivalence?
- To establish dissolution specifications

IVIVC Categories

- Level A:
 - Point-to-point relationship between *in vitro* dissolution and *in vivo* input rate (can be linear or non-linear)
- Level B:
 - Correlation based on statistical moment analysis (*in vitro* dissolution time correlated with MRT)
- Level C:
 - Single point relationship between a dissolution parameter (e.g., t_{50%}) and pharmacokinetic output (e.g., Cmax, AUC)

IVIVC – Level A

- Inputs:
 - *in vitro* dissolution data and *in vivo* Cp-time profiles for batches tested *in vivo*
 - *in vivo* Cp-time profiles for reference formulations
 - (IV, solution or IR doses for building/calibrating PK model or UIR)

- Outputs:
 - Step 1 ("deconvolution"): *in vivo* input rate
 - Step 2 ("correlation"): point-to-point correlation between *in vitro* dissolution and *in vivo* input rate

Major Processes after Oral Administration

* Modified from van de Waterbeemd, H, and Gifford, E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192-204 St SimulationsPlus Cognigen | DILIsym Services | Lixoft

* Modified from van de Waterbeemd, H, and Gifford, E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192-204

From Dissolution to Systemic Circulation

* Modified from van de Waterbeemd, H, and Gifford, E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192-204

Mechanistic Deconvolution is Designed to Capture the Impact of those Additional Processes

Requires model that incorporates all relevant mechanisms IV and/or immediate release PO data is used to calibrate the complete mechanistic absorption model/PK model

> St SimulationsPlus Cognigen | DILIsym Services | Lixoft

* Modified from van de Waterbeemd, H, and Gifford, E. ADMET In Silico Modelling: Towards Prediction Paradise? Nat. Rev. Drug Disc. 2003, 2:192-204

Metformin IVIVC

Figure 1. Mean *in vitro* dissolution data (panel a) and *in vivo* plasma concentration data (panel b) for metformin. *In vitro* data are mean of six-tablets for formulations A3 (\diamond), A7 (\blacksquare), and A15 (\blacktriangle), and *in vivo* data are mean from eight healthy volunteers for formulations IR (\bullet), A3 (\diamond), A7 (\blacksquare), and A15 (\bigstar). Although *in vivo* data were collected up to 72 h after dose administration, data are shown for 24 h for clarity.

Figure 4. Mean observed (from n=8 healthy volunteers) and predicted plasma concentration values for metformin. Predictions were made using the basic and extended convolution models (shown in panels a and b, respectively) for up to 22 h only, based on availability of *in vitro* data. Symbols are observed means for formulations A3 (\blacklozenge), A7 (\blacksquare), and A15 (\bigstar), and lines are the respective predictions. Error bars represent standard deviations of observed data.

Figure 5. Observed and fitted values for Fabs_{MR} (t). The observed data were obtained using eq. 1 for a period of 22 h after dose administration of formulations A3 (\blacklozenge), A7 (\blacksquare), and A15 (\blacktriangle). Values are mean from eight healthy volunteers. Observed data were fitted to a Hill function, shown in eq. 2. For all these fitted curves, shown as lines, r^2 was >0.9.

- Different formulations exhibited differences in both rate and extent of drug getting into systemic circulation
- Generating successful IVIVC required scaling function for total fraction absorbed for each formulation

Metformin Absorption

- Passive diffusion predominantly via paracellular pathway
- In human, paracellular pathway is most efficient in upper small intestine
- Proctor et al. proposed mechanism involving compound recycling through enterocytes to capture *in vivo* absorption

Metformin IVIVC

Average deconvolution, STT fitted to Avg ER profiles

Study	Formulation	Parameter	%PE
Fasted	Slow Int	AUC(0-t) ng h/ml	3.9
		Cmax ng/ml	-23.0
	Medium Int	AUC(0-t) ng h/ml	-10.1
		Cmax ng/ml	-22.6
	Avg Abs %PE Int	AUC(0-t) ng h/ml	7.0
		Cmax ng/ml	22.8
	Fast Ext	AUC(0-t) ng h/ml	-9.1
		Cmax ng/ml	-16.9

IVIVC – Validation Fasted State

Individual deconvolution, STT fitted to Ind ER profiles

Study	Formulation	Parameter	%PE
Fasted	Slow Int	AUC(0-t) ng h/ml	19.2
		Cmax ng/ml	4.5
	Medium Int	AUC(0-t) ng h/ml	12.4
		Cmax ng/ml	-10.3
	Avg Abs %PE Int	AUC(0-t) ng h/ml	15.8
		Cmax ng/ml	7.4
	Fast Ext	AUC(0-t) ng h/ml	5.7
		Cmax ng/ml	-14.0

Individual deconvolution, STT fitted to IR profile

Study	Formulation	Parameter	%PE
Fasted	Slow Int	AUC(0-t) ng h/ml	10.5
		Cmax ng/ml	7.0
	Medium Int	AUC(0-t) ng h/ml	16.0
		Cmax ng/ml	-7.9
	Avg Abs %PE Int	AUC(0-t) ng h/ml	13.2
		Cmax ng/ml	7.4
	Fast Ext	AUC(0-t) ng h/ml	1.7
		Cmax ng/ml	-19.6

6

- Kakhi developed mechanistic absorption model for metformin
- Preliminary results showed improved predictability of the IVIVC

IVIVC - Validation Comparison

Study: Fasted State	Formulation	Parameter	%PE
	SlowInt	AUC(0-22) ng h/ml	102.7
	Slowing	Cmax ng/ml	50.4
Balan et al. Basic Convolution	Medium Int	AUC(0-22) ng h/ml	56.1
		Cmax ng/ml	9.9
	East Int	AUC(0-22) ng h/ml	17.1
	Fastint	Cmax ng/ml	3.9

	Slow Int	AUC(0-22) ng h/ml	-1.6
		Cmax ng/ml	-7.3
Balan et al.	Medium Int	AUC(0-22) ng h/ml	1.4
Extended Convolution		Cmax ng/ml	-10.8
	Fast Int	AUC(0-22) ng h/ml	-2.4
		Cmax ng/ml	-11.0

Phoenix WinNonlin Numerical Deconvolution	Slow Int	AUC(0-24) ng h/ml	46.8
		Cmax ng/ml	-22.9
	Medium Int	AUC(0-24) ng h/ml	26.9
		Cmax ng/ml	-41.5
	Fast Int	AUC(0-24) ng h/ml	-0.3
		Cmax ng/ml	-35.8

Metformin IVIVC

IVIVC - Validation Comparison

- Mechanistic model <u>predicted</u> the changes in % of drug entering portal vein across the three formulations
- Similar trends were previously <u>fitted</u> using the extended convolution based approach

Figure 5. Observed and fitted values for Fabs_{MR} (t). The observed data were obtained using eq. 1 for a period of 22 h after dose administration of formulations A3 (\blacklozenge), A7 (\blacksquare), and A15 (\blacktriangle). Values are mean from eight healthy volunteers. Observed data were fitted to a Hill function, shown in eq. 2. For all these fitted curves, shown as lines, r^2 was >0.9.

The mechanistic model also predicted changes in the extent of drug entering portal vein for formulations with varying release rates

Building Mechanistic IVIVC

- Build mechanistic absorption/PK model for the API
 - Determine critical mechanisms impacting the drug absorption and pharmacokinetics
 - Include the mechanisms that lead to non-linear PK
 - Parameterize systemic disposition model
 - Ideally, using IV data
 - Parameterize absorption model
 - Using data from immediate release formulations
- Deconvolute *in vivo* release profiles
- Find relationship between *in vivo* and *in vitro* release profile and validate IVIVC

PBPK Model

Structure → ADMET Pred.

In vitro Experiments

Compound:

- logP/logD
- pKa(s)
- Solubility
- Permeability
- Fup
- B/P ratio

.

- CLint or Km & Vmax, renal CL
- DDI interaction constants (Ki & kinact, EC50 & Emax)

Formulation -Dose, dosage form, particle size, release profile

PBPK Model

Fa% Cp-time profile (and F% with PBPK) Nonlinear kinetics (and DDI) PK in special populations

PBPK/PD models

System/Physiology:

- Body height, weight, BMI
- Tissue sizes & blood flows
- Tissue compositions (water, lipid, protein, acidic phospholipids, etc.)
- Intestinal fluid volume and composition (pH, bile salts, etc.)
- Intestinal transit times
- Enzyme & transporter expression levels

....

Model Master File

Model Structure:

- Processes affecting drug absorption
 - Passive diffusion paracellular and/or transcellular
 - Carrier-mediated transport and metabolism at the absorption site
 - Nonspecific binding at the administration site
 - Others
- Processes affecting drug systemic disposition
 - Tissue distribution mechanisms
 - Elimination pathways
 - Others
- Need to be provided by the sponsor (may be available in public sources)

Drug Inputs:

- Drug physicochemical properties
- Drug pharmacokinetic properties (tissue distribution, Km and Vmax values for interaction with specific enzymes and transporters)

SimulationsPlus

Cognigen DILIsym Services Lixoft

- Need to be provided by the sponsor (may be available in public sources)

Model Master File

System Inputs:

- Independent of Drug/Formulation
- Description of physiological parameters
- Included with PBPK platform
 - Sponsor needs to specify the platform version used
 - Sponsor needs to specify any modifications from the default settings

Formulation Inputs – for IVIVC application:

- Type and composition of formulation
- in vitro dissolution data
- IVIVC equation
- Need to be provided by the sponsor

Summary

- Mechanistic IVIVC expands the IVIVC utility to compounds undergoing complex mechanisms
- Successful mechanistic IVIVC requires building complete mechanistic absorption/PK model
 - More involved process (-)
 - Provides additional information on what impacts the exposure (+)
- Reporting/description of the model needs to include:
 - Model structure (Sponsor and/or public information)
 - Compound specific information (Sponsor and/or public information)
 - Formulation specific information (Sponsor)
 - System specific information (included with platform, but Sponsor needs to report exact platform version that was used and explain any modifications to default parameters)