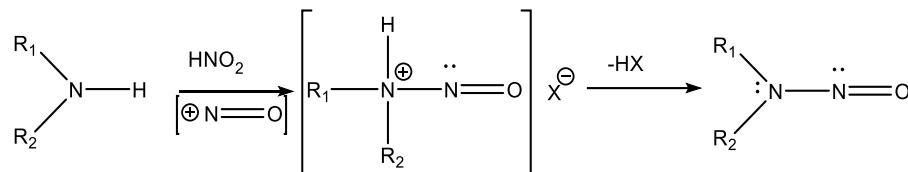


FDA Guidance for Industry

Control of Nitrosamine Impurities in Human Drugs

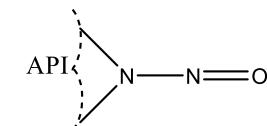
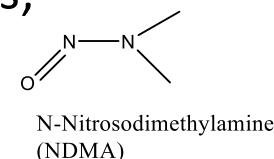
Dongmei Lu, Ph.D.
Office of Policy for Pharmaceutical Quality
Office of Pharmaceutical Quality
CDER/FDA
June 15, 2023

Disclaimer

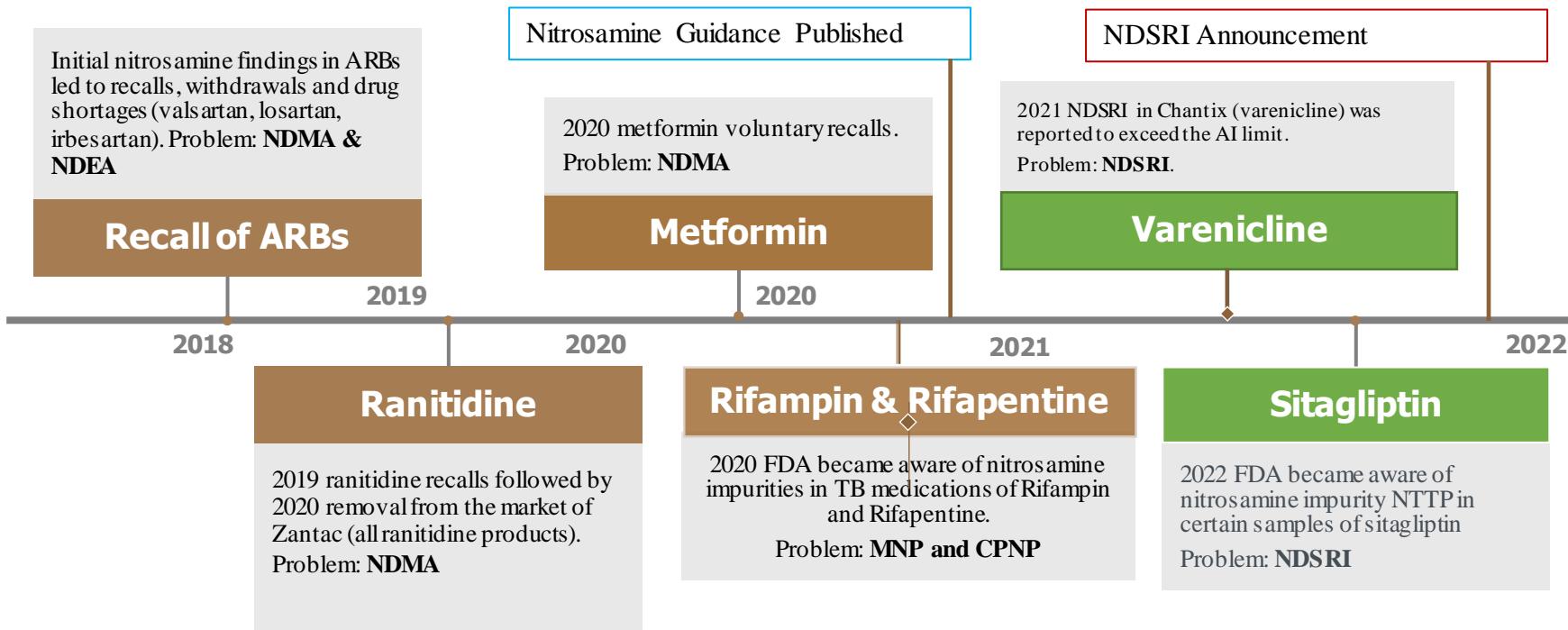

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Outline

- Background
- Root Causes of Nitrosamines (NSA)
- FDA Recommendations to Manufacturers
- Recent NDSRI Issues and FDA Recommendations for Mitigation Strategies
- Reporting Changes to FDA



Background

- What are Nitrosamines (NSA)?


Secondary, tertiary, or quaternary amines

- Probable or possible human carcinogen; potent genotoxic agents; “cohort of concern” compounds in the ICH M7(R1)
 - Small molecule NSA (NDMA, NDEA..)
 - Nitrosamine drug substance-related impurity (NDSRI) found in drug products (DP) related to API (or API fragment)*

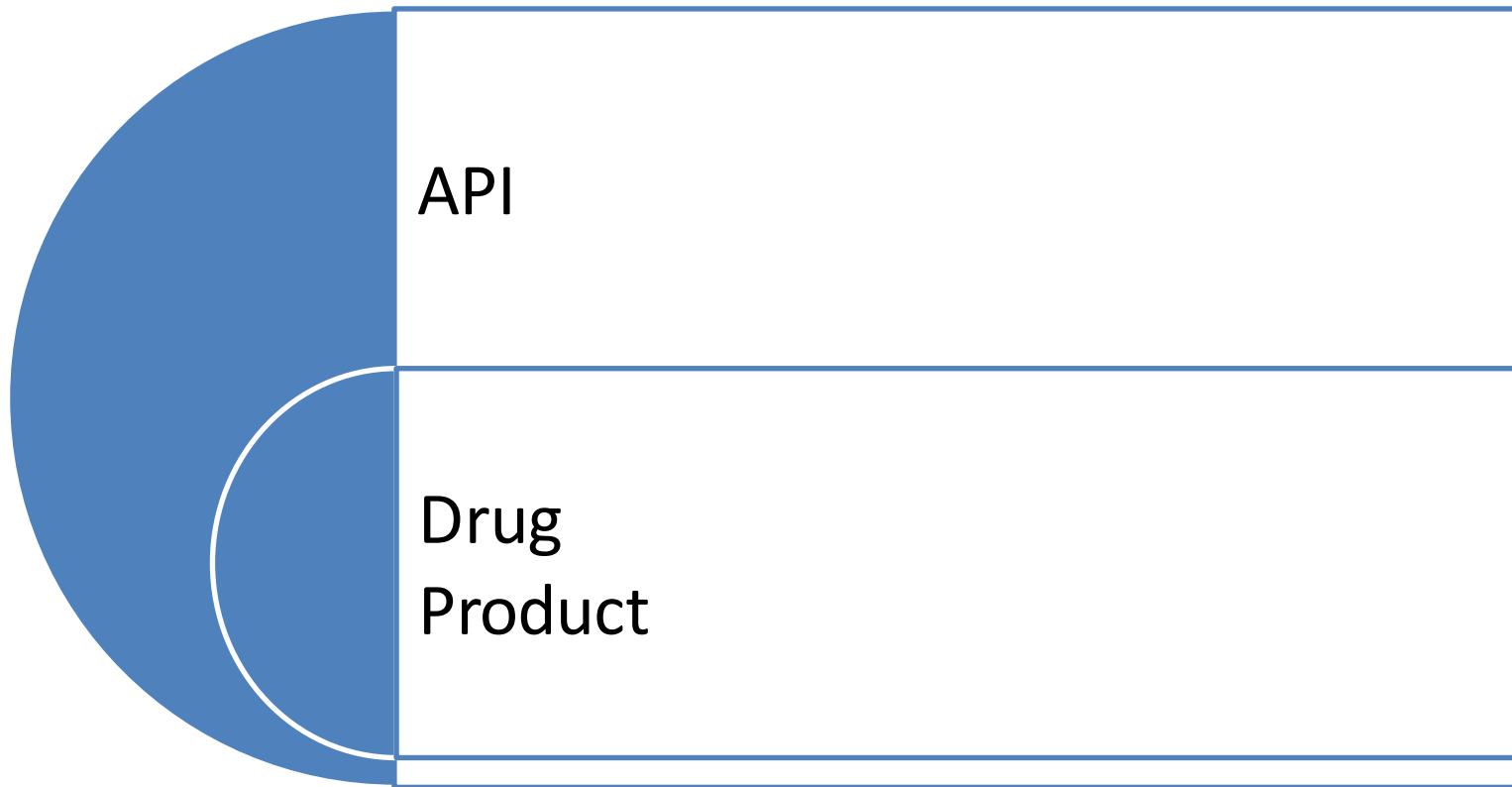
*See FDA's announcement on *Updates on possible mitigation strategies to reduce the risk of nitrosamine drug substance-related impurities in drug products*

Brief History of Nitrosamine Issues

FDA's Efforts

- Information dissemination from FDA
 - Public webpage for announcements
 - Product-specific communications
 - Industry meetings
 - Workshops
- Various working groups within FDA and collaboration with international regulators
- Guidance
 - Guidance for immediate implementation because of importance of providing timely information to API and DP manufacturers
 - Revision 1- update on implementation dates (2/2021)

Contents of Guidance*


- Root causes
 - in APIs
 - in DP other than API sourced nitrosamines
- Recommendations
 - Acceptable Intake Limits
 - to API manufacturers
 - to DP manufacturers
- Reporting Changes

Timeline for risk assessment, confirmatory testing and submission

- Approved/marketed drug products
- Pending applications

Root Causes

FDA

Recommendations

Acceptable Intake Limits (AI)

AI Limits for Some Nitrosamines in DPs

Nitrosamine	AI Limit (ng/day) ^{1,2}
NDMA	96
NDEA	26.5
NMBA	96
NMPA	26.5
NIPEA	26.5
NDIPA	26.5
MNP*	96
CPNP*	96

¹ The AI limit is a daily exposure to a compound that approximates a 1:100,000 cancer risk after 70 years of exposure.

² The conversion of AI limit into ppm varies by product and is calculated based on a drug's maximum daily dose (MDD) as reflected in the drug label (ppm = AI (ng)/MDD (mg)).

Three Steps for Mitigation Strategy

Recommendations to API Manufacturers

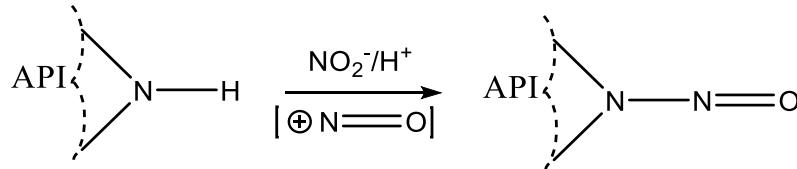
- API manufacturers: (corresponding to root causes)
 - Optimize design of process in ROS: condition, avoid amine bases/ solvent, control reaction sequence/ process conditions
 - Audit/monitor supply chain
 - Avoid cross-contamination
 - Reprocess/rework batches

Recommendations to API Manufacturers

- Control of Nitrosamine Impurity in APIs
 - LOQ < nitrosamine level ≤ AI
 - control strategy (including specifications)
 - Nitrosamine level > AI
 - The batches should not be released unless with FDA agreement to prevent/mitigate drug shortages

Recommendations to DP Manufacturers

- DP manufacturers: (corresponding to root causes)
 - Collaborate with API manufacturers:
 - continuously test API lots until verified w/o unacceptable levels of nitrosamines (NSAs)
 - Evaluate all pathways (including degradation) during manufacture and storage
 - Remove precursor impurities (such as DMA) that may be carried-over from API synthesis which can form nitrosamine in drug products


Recommendations to DP Manufacturers

- Control of Nitrosamines in DPs
 - LOQ<NSA level ≤AI:
 - control strategy (specification);
 - necessary if risk is inherent from API or DP
 - NSA level > AI:
 - Batches should not be released
 - contact FDA regarding batches on the market
 - FDA may exercise regulatory discretion when warranted to prevent/mitigate drug shortages

Nitrosamine Drug Substance – Related Impurities (NDSRIs)

- Recently, NDSRIs were identified in certain products, e.g., Varenicline, Sitagliptin
- Sharing structural similarity to the API; unique to each API (containing API or API fragment)

- Root causes:
 - APIs (secondary or tertiary amines) are exposed to nitrosating compounds such as nitrite impurities in excipients
 - formed during drug product manufacture or shelf-life storage

NDSRI Mitigation Strategies

FDA public announcement 11/18/2021[#]

- Screen excipients for nitrite impurities
- Add Antioxidant
- Add pH modifier
- Other innovative strategies

Reporting Changes to FDA

- Recommended timeline for three steps (risk assessment, confirmatory testing and submission of changes)
 - Approved/marketed DPs
 - Risk assessment: within 7 months from guidance's first publication (March 1st, 2021)
 - Confirmatory testing: start once risk identified; ASAP for high-risk products
 - Submission: last two steps within 3 years of guidance publication (October 1st, 2023); FDA is seeking comments on extension of recommended timeline.*
 - Pending applications
 - Pre-submission: risk assessment, confirmatory testing. Changes may be submitted in amendment if not included in original submission
 - Pending with FDA:
 - ❖ risk assessment, confirmatory testing if at risk
 - ❖ report to FDA if NSA>AI
 - ❖ If LOQ<NSA level ≤AI, amendment with control strategy

* See 88 FR 28557 <https://www.federalregister.gov/documents/2023/05/04/2023-09526/identification-assessment-and-control-of-nitrosamine-drug-substance-related-impurities-in-human-drug> (5/4/2023)

