

Using Structure-Activity Relationships to Inform Setting Acceptable Intakes for Nitrosamine Impurities

Naomi L. Kruhlak, Ph.D.

Scientific Lead, Computational Toxicology Consultation Service

Division of Applied Regulatory Science

Office of Clinical Pharmacology

Office of Translational Sciences

Center for Drug Evaluation and Research

US Food and Drug Administration

CRCG-FDA Workshop on NDSRIs

June 15, 2023

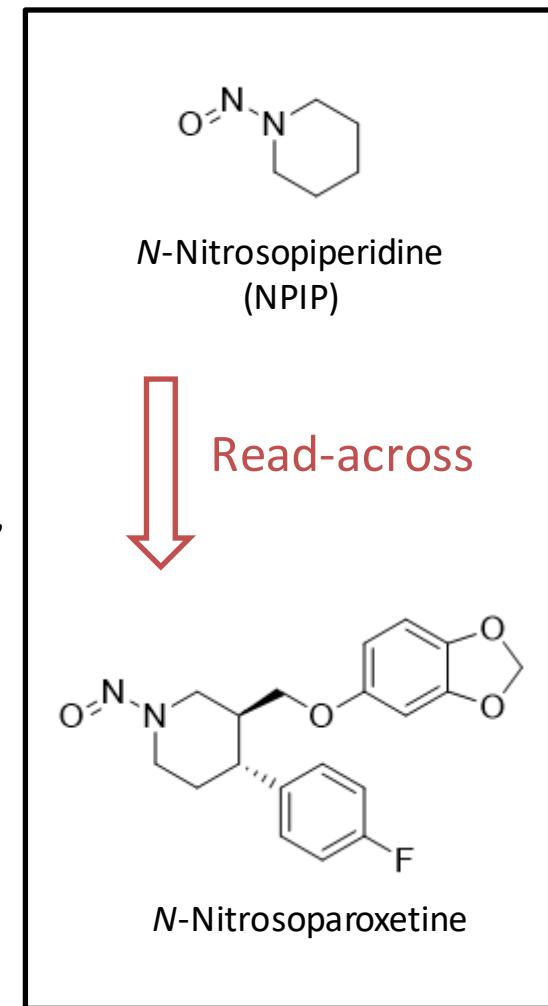
FDA Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

Outline

- (Quantitative) Structure-Activity Relationship terminology
- FDA guidance, “Control of Nitrosamine Impurities in Human Drugs”
 - Use of surrogates for setting AI limits
 - Challenges associated with setting limits for nitrosamine drug-substance related impurities (NDSRIs)
- Research on nitrosamine SAR at FDA/CDER
 - Local similarity method to identify nitrosamine surrogates
 - Current research on predicting carcinogenic potency using weighted features and structural fingerprinting
- Future directions

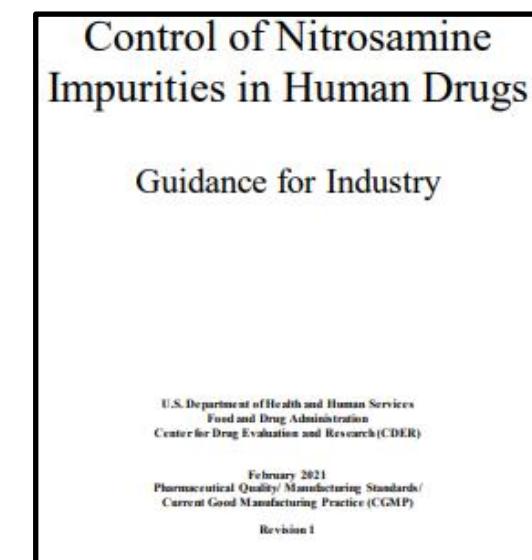


**U.S. FOOD & DRUG
ADMINISTRATION**

(Q)SAR Terminology

(Q)SAR Terminology

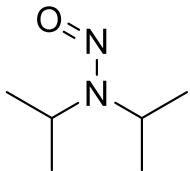
- (Q)SAR = (Quantitative) Structure-Activity Relationship
 - Modeling identifies associations between attributes of chemical structures and biological activity (e.g., toxicity)
 - General assumption: Similar molecules exhibit similar chemical and biological properties
 - ⇒ Toxicity can be explained by chemical structure
- QSAR and SAR collectively referred to as (Q)SAR
 - QSAR: Quantitative, often developed through machine-learning, “statistical-based”
 - SAR: Qualitative, human expert derived, “expert rule-based”
- (Q)SAR models used to make a prediction of a chemical’s toxicity based on (multiple aspects of) its structure
- Read-across: Use of a structurally similar analog, or “surrogate,” and SARs to make a prediction of biological activity for a (data-poor) target molecule


**U.S. FOOD & DRUG
ADMINISTRATION**

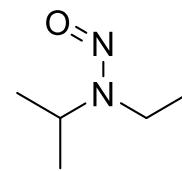
FDA Nitrosamine Guidance

FDA Nitrosamine Guidance

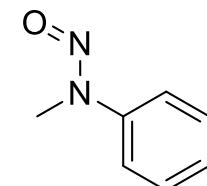
- *Control of Nitrosamine Impurities in Human Drugs*, published September 2020, revised February 2021¹
- Appendix B: A human acceptable intake (AI) limit can be calculated by linear extrapolation from a rodent TD50 value, which represents the dose at which 50% of animals in a long-term, repeat-dose carcinogenicity study exhibit tumors
 - Convert TD50 (1:2 tumor incidence in rats) to AI (1:100,000 excess cancer risk in humans)
 - Lower TD50 or AI = greater carcinogenic potency
- TD50 values for ~140 nitrosamines reported in the Carcinogenic Potency Database (CPDB)
 - Data available through the Lhasa Carcinogenicity Database (LCDB) (<https://carcdb.lhasalimited.org/>)
 - Mostly small molecule nitrosamines: Carcinogenic potency ranges over 4 orders of magnitude—some nitrosamines are non-carcinogenic
 - Many studies are not robust
- In the absence of robust empirical carcinogenicity data for an impurity, an AI can be calculated using TD50 value from a structurally related analog, or surrogate

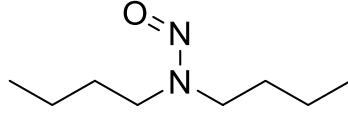


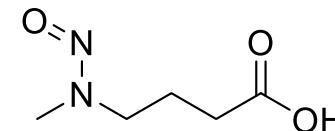
Examples of Nitrosamine Impurities in Pharmaceuticals

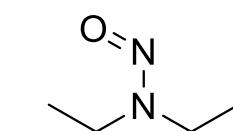


- Nitrosamine impurities can be small molecules or nitrosated forms of an API or its fragments (Nitrosamine Drug Substance Related Impurity, or NDSRI)

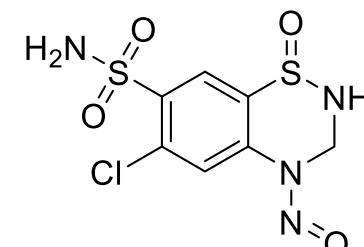

Small Molecule Nitrosamine Impurities


N-Nitrosodiisopropyl amine (NDIPA)

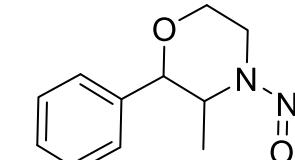

N-Nitrosoisopropyl ethylamine (NIPEA)


N-Nitrosomethylphenyl amine (NMPA)

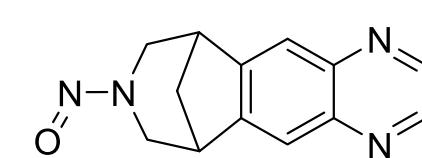
N-Nitrosodibutyl amine (NDBA)

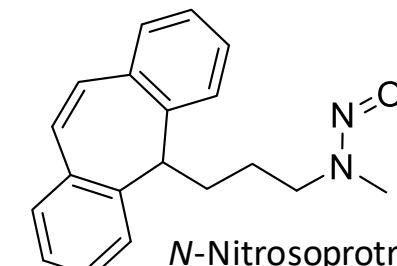


N-Nitroso-*N*-methyl-4-aminobutyric acid (NMBA)



N-Nitrosodiethyl amine (NDEA)


NDSRIs

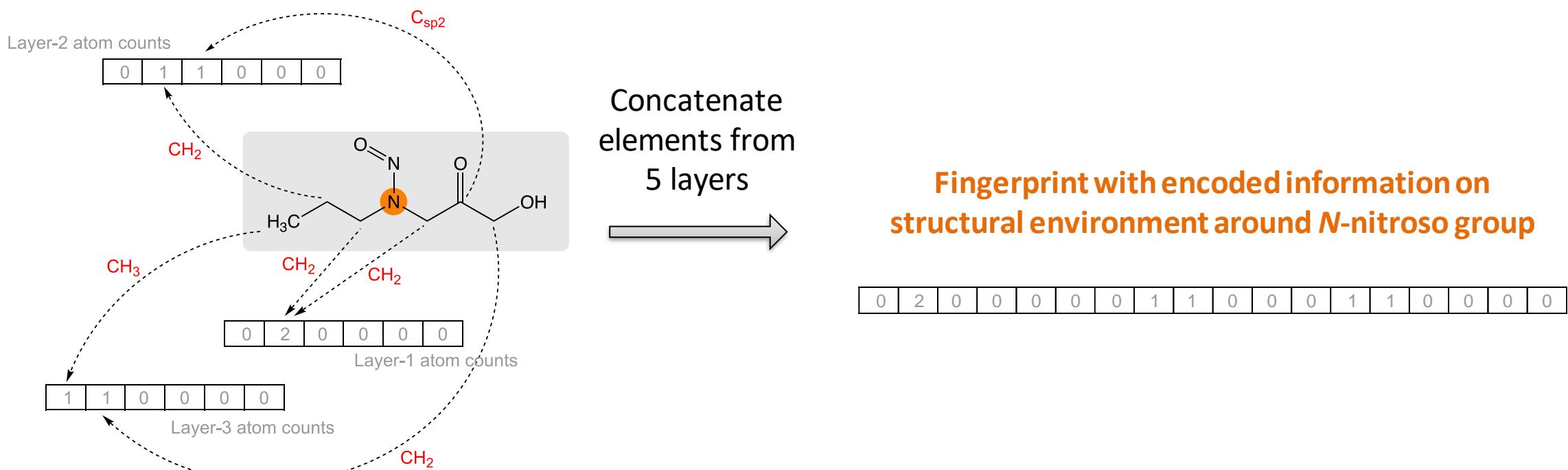

N-Nitrosohydrochlorothiazide

N-Nitrosophenmetrazine

N-Nitrosovarenicline

N-Nitrosoprotriptyline

- Typically, no experimental mutagenicity or carcinogenicity data available for NDSRIs; no new carci data expected
- Often unique to drug substance
- For risk assessment, need to determine 1) mutagenic potential and 2) carcinogenic potency


**U.S. FOOD & DRUG
ADMINISTRATION**

Research Efforts at FDA/CDER

Local Similarity Assessment

- Initial FDA research efforts focused on developing methods to more systematically identify a nitrosamine surrogate for read-across based on local similarity
- Collaborated with MultiCASE Inc. on development of a structural fingerprint to calculate local similarity of *N*-nitroso group environment to guide surrogate candidate identification¹

Limitations of Read-Across

- Limited number of adequately tested surrogates—some areas of chemical space have many studies where none are highly robust (e.g., nitrosated piperazines)
 - Prefer a prediction method that is not reliant upon a single compound
 - Prefer a method that is less subjective (Problem: How similar is similar enough?)
- Develop new prediction methods that consider multiple structural, metabolic and/or physicochemical factors
 - Can leverage a larger body of “training” data for identification of SAR patterns, even if individual studies are not highly robust
 - Can use relative carcinogenic potency data even if no TD50s are available
 - Can integrate chemical reactivity or ADME considerations

A significant body of work has already been published on SAR patterns for nitrosamines...

SAR Patterns Described in Recent Publications

ELSEVIER

Developing structure

N-

Kevin

Chemical Research in Toxicology

pubs.acs.org/crt

What Makes a Potent Nitrosamine? Structure-Derived Structure–Activity Relationships

Robert Thomas, Rachael E. Tennant, Antonio Anax F. Ol

Cite This: <https://doi.org/10.1021/acs.chemrestox.2c00199>

Computational Toxicology

> *Chem Res Toxicol.* 2022 Mar 21;35(3):475-489. doi: 10.1021/acs.chemrestox.1c00369.
Epub 2022 Feb 25.

Practi
Accep

OPR&D

pubs.acs.org/OPRD

Perspective

Drawing a Line: Where Might the Cohort of Concern End?

David J. Ponting* and Robert S. Foster

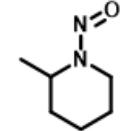
Cite This: <https://doi.org/10.1021/acs.oprd.3c00008>

Read Online

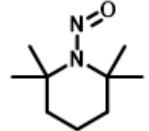
ng

spective

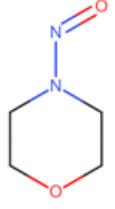
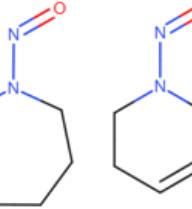
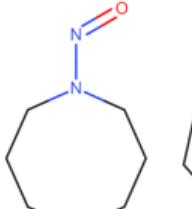
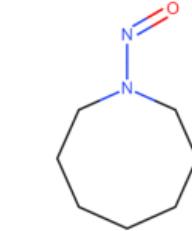
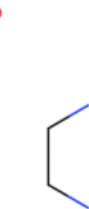
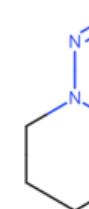
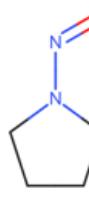
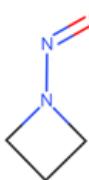
Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients


David J. Ponting, Krista L. Dobo, Michelle O. Kenyon, and Amit S. Kalgutkar*

Cite This: <https://doi.org/10.1021/acs.jmedchem.2c01498>



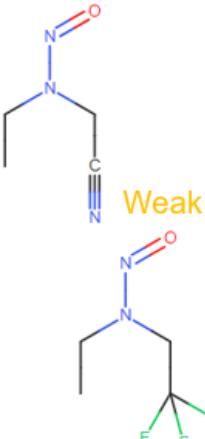
Read Online









Examples of SAR Patterns for Nitrosamines^{1,2}

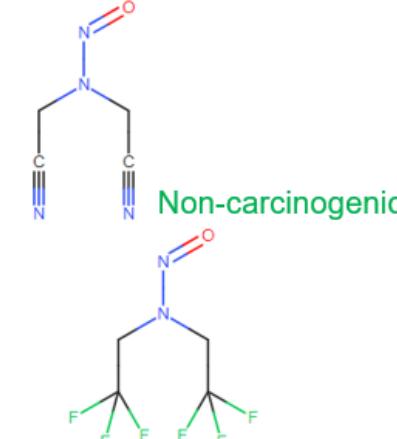
Mutagenic,
Carcinogenic

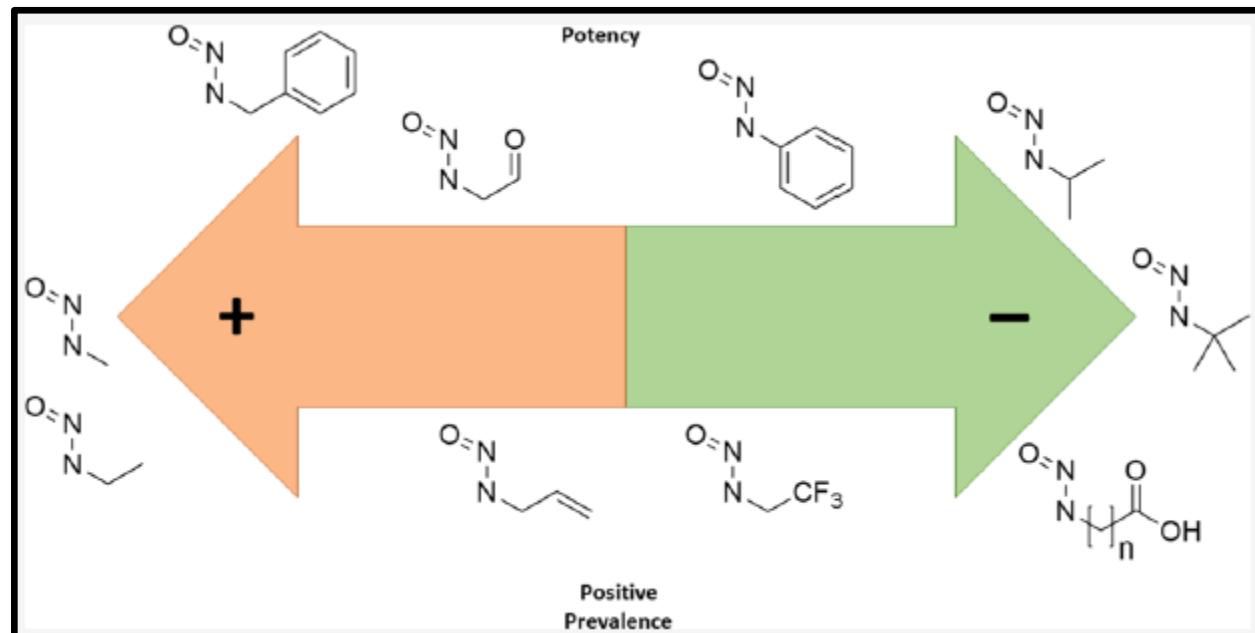
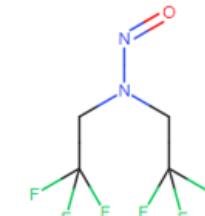


Non-mutagenic,
Non-carcinogenic

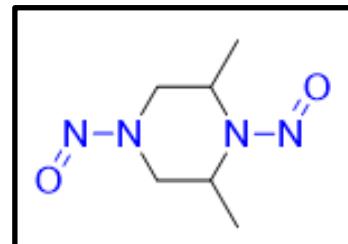


Weak


Strong



Strong

Weak


Non-carcinogenic

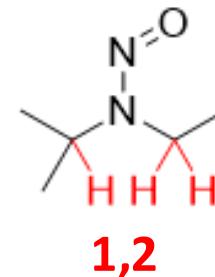
Exploring Relative Potency of Structural Features

- Collaboration with international drug regulatory authorities through Nitrosamines International Technical Working Group (NITWG)
 - Goal of setting an AI by predicting potency using activating and deactivating structural features present in nitrosamine
 - Categorical prediction shows good promise
- Created a data set of 84 nitrosamines with rat TD50s from CPDB/LCDB and/or relative potency classifications from Rao et al. (1979)¹
 - Molecular weight range of 74 to 278 g/mol (described as “small molecules” on later slides)
 - Corresponds to 90 individual *N*-nitroso groups (some molecules have two groups)

Examined each *N*-nitroso group environment separately

2,6-Dimethyldinitrosopiperazine

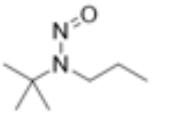
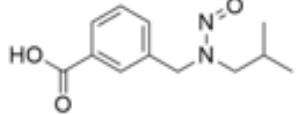
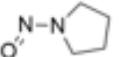
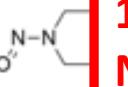
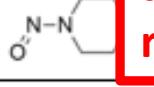
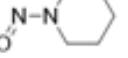
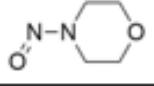
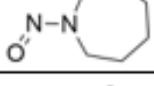
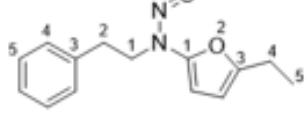
Exploring Relative Potency of Structural Features

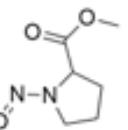
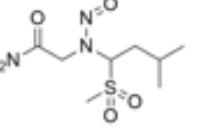
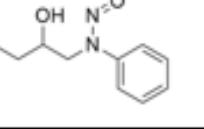
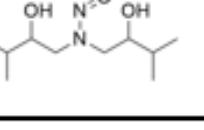


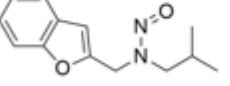
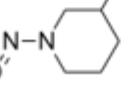
- Assigned relative weights to activating and deactivating features based on:
 - SAR trends reported in the published literature (examples on Slides 12 and 13)
 - SAR trends observed in CPDB/LCDB TD50 dataset
 - Mechanistic rationale
- Assessed prevalence of features using molecular fingerprints across 90 *N*-nitroso group environments in small molecule dataset
- Applied the same fingerprints to drugs marketed in US with nitrosatable amines
 - Secondary amines and tertiary dimethyl amines
 - Each *N*-nitroso center evaluated separately

Parent Drug MW (g/mol)	Prevalence (%)
0-250	18
251-500	66
501-750	10
750-1000	3
>1000	3

Alpha-Hydrogen Counts










- Hydrogen distribution across alpha-carbon atoms can indicate potential for metabolic activation





- Most prevalent category in small molecule dataset is 2,2 (high potency) compared to NDSRIs, which have broader distribution



*Activity is very low when tertiary alpha-carbon is present

Count of hydrogen atoms on each alpha-carbon, lowest first	Example	Relative Carcinogenic Potency	Prevalence in small molecule dataset (%)	Prevalence in drug dataset (%)
0,0		Low	1	14
0,1		Low	0	5
0,2		Medium/Low*	0	14
0,3		Medium*	10	6
1,1		Low	3	3
1,2		Low	4	13
1,3		Low	2	12
2,2		High	58	13
2,3		High	20	20
3,3		High	1	0

Feature	Example Structure	Deactivating Effect	Prevalence in small molecule dataset (%)	Prevalence in drug dataset (%)
Tertiary alpha-carbon		Very Strong	1	6
Carboxylic acid group anywhere		Strong	4	13
Pyrrolidine		Strong	2	≤2
6-Membered ring with sulfur				≤2
Piperazine				≤2
Piperidine		Medium	4	4
Morpholine		Weak	1	≤2
Azepane		Weak	1	≤2
Two chains of ≥5 atoms		Weak	4	25

Deactivating and Activating Features

Electron-withdrawing group on one alpha-carbon		Weak	1	9
Electron-withdrawing group on both alpha-carbons		Medium	2	≤2
Hydroxyl group on one beta-carbon		Weak	12	20
Hydroxyl group on both beta-carbons		Medium	6	≤2

Feature	Example	Activating Effect	Prevalence in small molecule dataset (%)	Prevalence in drug dataset (%)
Benzyl-like		Weak	1	10
Methyl on beta-carbon		Weak	3	≤2

Future Directions

- Combined weights of features may be used to generate a prediction of the carcinogenic potency of an untested NDSRI
 - Considers the effects of multiple features in the molecule—important for complex nitrosamines such as NDSRIs
 - Leverages larger body of publicly available carci data than surrogate analysis—less dependent on robust data for a single compound
 - Can refine features and weights with new testing data generated over time, similar to evolution of ICH M7 (Q)SAR models used for other classes of mutagenic impurities
 - Can integrate additional data types and chemical/biological considerations as they emerge (e.g., quantum mechanical descriptors, metabolic insights)
- Structural fingerprinting of NDSRIs can inform future testing and modeling
 - NDSRI chemical space differs substantially from that of small molecule nitrosamines
 - Use identified data gaps to inform compound selection for NDSRI testing initiatives
 - New data and knowledge will improve model performance over time and lead to greater prediction accuracy and coverage

Acknowledgements

FDA

Pharm/Tox

Tim McGovern
Sruthi King
Aisar Atrakchi
Bob Dorsam
Karen Davis-Bruno

Computational Toxicology

Govindaraj Kumaran
Barbara Scott
Diandian Shen
Jahan Cooper
Brian Connell
Tyler Peryea
Patra Volarath

NITWG Subgroup

Marianne Schmidt (Co-Lead, EMA)
Roland Froetschl (EMA)
Stefan Graber (Swissmedic)
Stephen Horne (Health Canada)
Sruthi King (FDA)
Ira Koval (EMA)
Anja Langenkamp (Swissmedic)
Tim McGovern (FDA)
Alan Sanh (EMA)
Leon van Aerts (EMA)
Alisa Vespa (Health Canada)
Rhys Whomsley (EMA)

Research Collaboration Agreements

MultiCASE Inc., Lhasa Limited, and Leadscape
Inc. (Instem)

**U.S. FOOD & DRUG
ADMINISTRATION**