

Development and Status of Product-Specific Guidances for Topical Products

*FDA Workshop: Guidance Development and Regulatory Assessment of Generic Topical and
Dermal Drug Products*

Megan Kelchen, PhD

Senior Pharmacologist

Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs

CDER | U.S. FDA

October 3, 2024

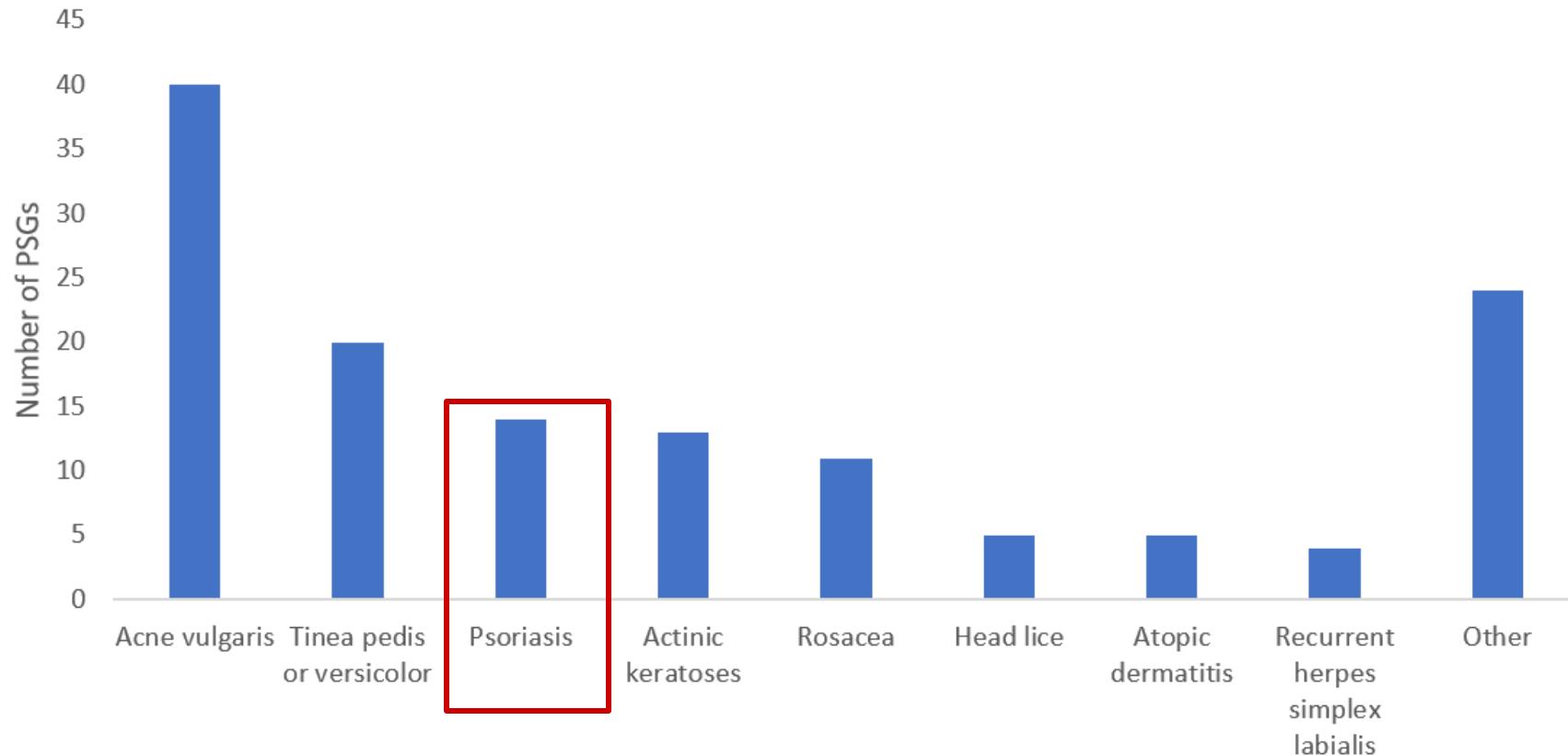
Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

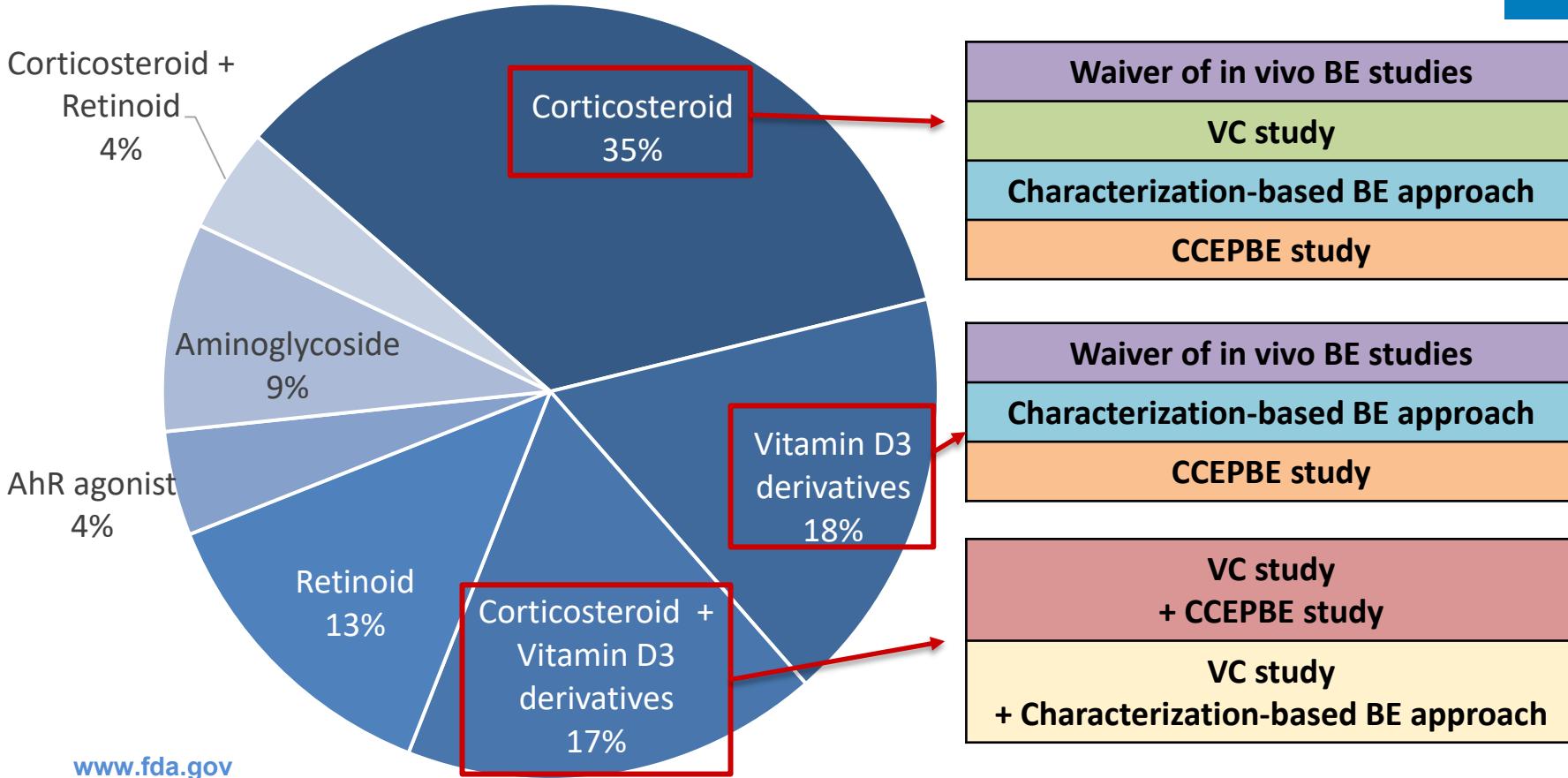
Agenda

- Overview of BE approaches within PSGs for topical products
- Characterization-based BE approaches
 - Development of the approach via research
 - Components of the approach
 - Current recommendations within PSGs

Establishing BE for topical products


Main examples for BE approaches:

- Comparative clinical endpoint (CCEP) BE study
- Characterization-based BE approach
- Vasoconstrictor (VC) study
- Waiver of in vivo BE studies

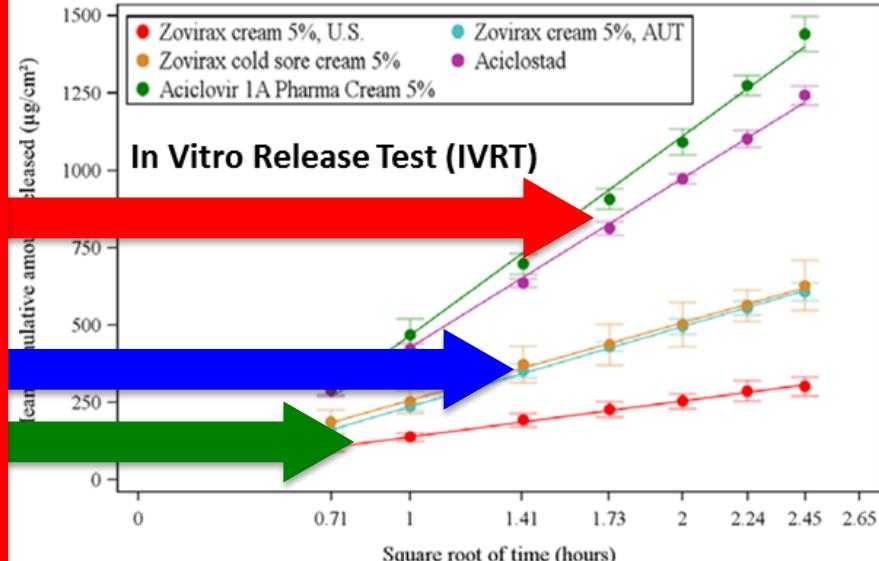

PSGs often include multiple BE approaches

- Examples:
 - Two options: (1) Characterization-based BE approach, or (2) CCEP BE study
 - Two options: (1) Waiver of in vivo BE studies, or (2) VC study

CCEP BE studies for topical products

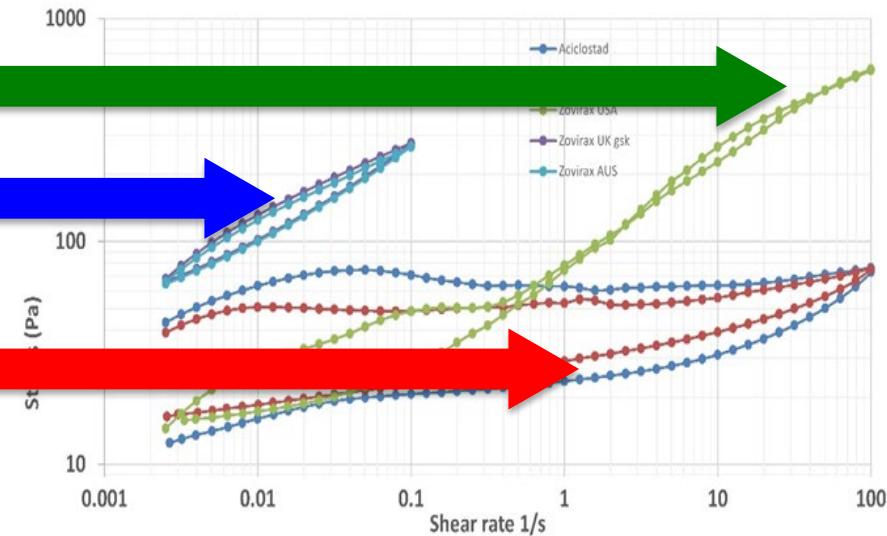
BE approaches for psoriasis

Characterization-based BE approach

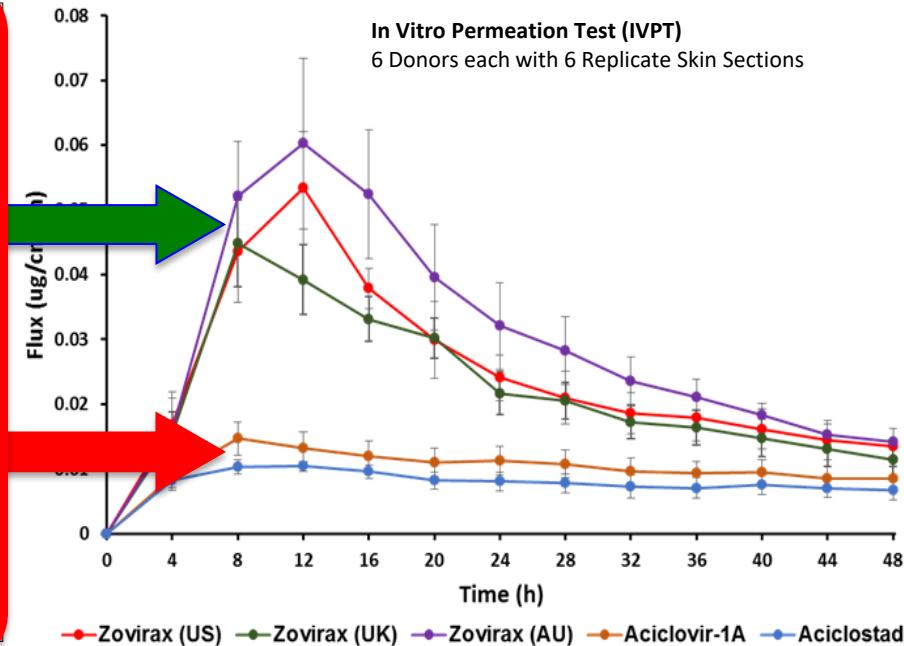


- The components (Q1) and quantitative composition (Q2) of a topical product (and how it is manufactured) can modulate its physical and structural arrangement of matter (Q3)
- These Q3 characteristics influence molecular interactions that control the rate and extent of topical bioavailability
- One approach to developing generic topical products is to:
 - Characterize the complexity of the RLD
 - Match the Q1, Q2, and Q3 characteristics of the RLD

In vitro quality and performance


Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
Density (g/cc)	1.02	1.02	1.02	1.01
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	
Crystalline Habit	Rectangular	Rectangular	Ovoid	Ovoid
Particle size (d50) (µm)	3.8			
pH	7.74	7.96	7.54	4.58
Work of Adhesion	59	81	60	17
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37
Drying Rate (T-30%)	>12h	~8h	~7h	<1h
Water Activity	0.75	0.73	0.74	0.95

In vitro quality and performance


Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum				
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
Density (g/cc)	1.02	1.02	1.02	1.01
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	99.7 ± 1.7
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate
Crystalline Habit	Rectangular	Rectangular	Rectangular	Ovoid
Particle size (d50) (µm)	3.8	2.5	3.4	6.8
pH	7.74	7.96	7.54	4.58
Work of Adhesion	59	81	60	17
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37
Drying Rate (T-30%)	>12h	~8h	~7h	<1h
Water Activity	0.75	0.73	0.74	0.95

Thixotropic Rheology

In vitro cutaneous PK study

Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)	
Water	Water	Purified water	Water	Water	
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin	
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline	
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol	
SLS	SLS	SLS			
Poloxamer 407	Poloxamer 407	Poloxamer 407			
			Dimethicone 20	Dimethicone	
			Glyceryl Mono	Glyceryl Mono	
			Stearate	Stearate	
			Macrogol	Polyoxyethylene	
			stearate	stearate	
Density (g/cc)	1.02	1.02	1.02	1.02	
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	99.7 ± 1.7	98.3 ± 2.6
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate
Crystalline Habit	Rectangular	Rectangular	Rectangular	Ovoid	Ovoid
Particle size (d50) (µm)	3.8	2.5	3.4	6.8	6
pH	7.74	7.96	7.54	4.58	6.05
Work of Adhesion	59	81	60	17	18
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37	0.26
Drying Rate (T-30%)	>12h	~8h	~7h	<1h	<1h
Water Activity	0.75	0.73	0.74	0.95	0.95

Characterization-based BE approach

No significant difference (NSD) in formulation

Comparative physicochemical and structural (Q3) characterization

In vitro release test (IVRT) study

In vitro permeation test (IVPT) study or other bio-relevant study

In vivo systemic pharmacokinetic (PK) study

Guidances for topical products

- October 2022
 - New draft guidances for industry:
 - *Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs*
 - *In Vitro Release Test (IVRT) Studies for Topical Drug Products Submitted in ANDAs*
 - *In Vitro Permeation Test (IVPT) Studies for Topical Drug Products Submitted in ANDAs*
 - Revised draft guidance for industry:
 - *Topical Dermatologic Corticosteroids: In Vivo Bioequivalence*

Contains Nonbinding Recommendations

Draft – Not for Implementation

Draft Guidance on Doxepin Hydrochloride

October 2022

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

In general, FDA's guidance documents do not establish legally enforceable responsibilities. Instead, guidances describe the Agency's current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word *should* in Agency guidances means that something is suggested or recommended, but not required.

Active Ingredient: Doxepin hydrochloride

Dosage Form; Route: Cream; topical

Recommended Studies: Two in vitro bioequivalence studies, one in vivo bioequivalence study with pharmacokinetic endpoints, and other characterization tests

To demonstrate bioequivalence for doxepin hydrochloride topical cream, 5% using a combination of in vitro studies and an in vivo study with pharmacokinetic endpoints, the following criteria should be met:

1. The test product should contain no difference in inactive ingredients or in other aspects of the formulation relative to the reference standard that may significantly affect the local or systemic availability of the active ingredient. For example, if the test product and reference standard are qualitatively (Q1) and quantitatively (Q2) the same, as defined in the most recent version of the FDA guidance for industry on *ANDA Submissions – Refuse-to-Receive Standards*⁴, and the criteria below are also satisfied, the bioequivalence of the test product may be established using a characterization-based bioequivalence approach.
2. The test product and reference standard should have the same physicochemical and structural (Q3) attributes, based upon acceptable comparative Q3 characterization tests with a minimum of three batches of the test product and three batches (as available) of the reference standard. The test product and reference standard batches should ideally represent the product at different ages throughout its shelf life. Refer to the most recent version of the FDA guidance for industry on *Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs*⁵ for additional information regarding comparative Q3 characterization tests. The comparison of the test

NSD standard

Active Ingredient: Doxepin hydrochloride

Dosage Form; Route: Cream; topical

Recommended Studies: Two in vitro bioequivalence studies, one in vivo bioequivalence study with pharmacokinetic endpoints, and other characterization tests

To demonstrate bioequivalence for doxepin hydrochloride topical cream, 5% using a combination of in vitro studies and an in vivo study with pharmacokinetic endpoints, the following criteria should be met:

1. The test product should contain no difference in inactive ingredients or in other aspects of the formulation relative to the reference standard that may significantly affect the local or systemic availability of the active ingredient. For example, if the test product and reference standard are qualitatively (Q1) and quantitatively (Q2) the same, as defined in the most recent version of the FDA guidance for industry on *ANDA Submissions – Refuse-to-Receive Standards*^a, and the criteria below are also satisfied, the bioequivalence of the test product may be established using a characterization-based bioequivalence approach.

- The “no significant difference” (NSD) standard is based upon the principles for assessing Q1/Q2 sameness, but also considers certain differences that have previously been determined to be acceptable based on available scientific evidence.
- A NSD standard expands the eligibility for a characterization-based BE approach for topical products.

NSD standard

Active Ingredient: Doxepin hydrochloride

Dosage Form; Route: Cream; topical

Recommended Studies: Two in vitro bioequivalence studies, one in vivo bioequivalence study with pharmacokinetic endpoints, and other characterization tests

To demonstrate bioequivalence for doxepin hydrochloride topical cream, 5% using a combination of in vitro studies and an in vivo study with pharmacokinetic endpoints, the following criteria should be met:

1. The test product should contain no difference in inactive ingredients or in other aspects of the formulation relative to the reference standard that may significantly affect the local or systemic availability of the active ingredient. For example, if the test product and reference standard are qualitatively (Q1) and quantitatively (Q2) the same, as defined in the most recent version of the FDA guidance for industry on *ANDA Submissions – Refuse-to-Receive Standards*^a, and the criteria below are also satisfied, the bioequivalence of the test product may be established using a characterization-based bioequivalence approach.

Example of the NSD standard

A topical test product may be considered to have NSD if it contains minor differences in ingredient grade.

RS Formulation	Test Formulation
Carbopol 934P 2.00%	Carbomer homopolymer type B, NF (Carbopol 974P) 2.00%
Petrolatum, USP 5.00%	White Petrolatum, USP 5.00%

Comparative Q3 characterization

2. The test product and reference standard should have the same physicochemical and structural (Q3) attributes, based upon acceptable comparative Q3 characterization tests with a minimum of three batches of the test product and three batches (as available) of the reference standard. The test product and reference standard batches should ideally represent the product at different ages throughout its shelf life. Refer to the most recent version of the FDA guidance for industry on *Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs*⁶ for additional information regarding comparative Q3 characterization tests. The comparison of the test product and reference standard should include characterizations of the following Q3 attributes:
 - a. Characterization of visual appearance and texture
 - b. Characterization of phase states and structural organization of matter
 - Microscopic examination with representative high-resolution microscopic images at multiple magnifications
 - Analysis of globule size distribution
 - c. Characterization of rheological behavior which may be characterized using a rheometer that is appropriate for monitoring the non-Newtonian flow behavior of semi-solid dosage forms. The following evaluations are recommended:
 - A characterization of shear stress vs. shear rate and viscosity vs. shear rate. At minimum, this should consist of numerical viscosity data at three shear rates (low, medium, and high).
 - A complete flow curve across the range of attainable shear rates, until low or high shear plateaus are identified.
 - Yield stress values should be reported if the material tested exhibits plastic flow behavior.
 - The linear viscoelastic response (storage and loss modulus vs. frequency) should be measured and reported. Any non-linear viscosity behavior over a range of shear rates should also be investigated, measured and reported.
 - d. Characterization of pH
 - e. Characterization of specific gravity
 - f. Characterization of any other potentially relevant Q3 attributes

IVRT study

3. The test product and reference standard should have an equivalent rate of doxepin hydrochloride release based upon an acceptable in vitro release test (IVRT) bioequivalence study comparing a minimum of one batch each of the test product and reference standard using an appropriately validated IVRT method.

Type of study: Bioequivalence study with IVRT endpoint

Design: Single-dose, two-treatment, parallel, multiple-replicate per treatment group study design using an occluded pseudo-infinite dose, in vitro

Strength: 5%

Test system: A synthetic membrane in a diffusion cell system

Analytes to measure: Doxepin in receptor solution

Equivalence based on: Doxepin (IVRT endpoint: drug release rate)

Additional comments: Refer to the most recent version of the FDA guidance for industry on *In Vitro Release Test Studies for Topical Drug Products Submitted in ANDAs*^a for additional information regarding the development, validation, conduct and analysis of acceptable IVRT methods/studies. The batches of test product and reference standard evaluated in the IVRT bioequivalence study should be included among those for which the Q3 attributes are characterized.

IVPT study

4. The test product and reference standard should have an equivalent rate and extent of doxepin permeation through excised human skin based upon an acceptable in vitro permeation test (IVPT) bioequivalence study comparing a minimum of one batch each of the test product and reference standard using an appropriately validated IVPT method.

Type of study: Bioequivalence study with IVPT endpoints

Design: Single-dose, two-treatment, parallel, multiple-replicate per treatment group study design using an unoccluded finite dose, in vitro

Strength: 5%

Test system: Barrier-competent human skin from male and/or female donors of at least 18 years of age in a diffusion cell system

Analytes to measure: Doxepin in receptor solution

Equivalence based on: Doxepin (IVPT endpoints: total cumulative amount (AMT) and maximum flux (J_{max}))

Additional comments: Refer to the most recent version of the FDA guidance for industry on *In Vitro Permeation Test Studies for Topical Drug Products*

Submitted in ANDAs^a for additional information regarding the development, validation, conduct and analysis of acceptable IVPT methods/studies. The batches of test product and reference standard evaluated in the IVPT bioequivalence study should be the same as those evaluated in the IVRT bioequivalence study.

In vivo systemic PK study

5. The test product and reference standard should demonstrate bioequivalence based upon an acceptable in vivo pharmacokinetic study with one batch each of the test product and reference standard.

Type of study: In vivo pharmacokinetic study

Design: Single-application, two-way crossover study design

Strength: 5%

Subjects: Males and non-pregnant, non-lactating females, general population

Analytes to measure: Doxepin and its active metabolite nordoxepin in plasma

Equivalence based on: Doxepin

Additional comments: The study conditions such as the dose of the test product and reference standard, the site of dose application, etc. should be consistent across the study and the bioanalytical method should be sufficiently sensitive to be able to adequately characterize the pharmacokinetic profiles of the test product and reference drug products. Refer to the most recent version of the FDA guidance for industry on *Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA*^a for additional information regarding the analysis of the pharmacokinetic bioequivalence study. The batches of test product and reference standard evaluated in the in vivo pharmacokinetic study should be the same as those evaluated in the IVRT and IVPT studies.

PSGs for topical aqueous gels

Active Ingredient	NSD	Visual appearance and texture	Microscopic images	Rheology	pH	Specific gravity	PSD	GSD	Water activity	Drying rate	Oleaginous components	IVRT	IVPT	PK
ADAPALENE														
ADAPALENE														
ADAPALENE; BENZOYL PEROXIDE														
ADAPALENE; BENZOYL PEROXIDE														
BENZOYL PEROXIDE; CLINDAMYCIN PHOSPHATE														
BENZOYL PEROXIDE; CLINDAMYCIN PHOSPHATE														
BENZOYL PEROXIDE; CLINDAMYCIN PHOSPHATE														
BENZOYL PEROXIDE; ERYTHROMYCI														
BENZOYL PEROXIDE; ERYTHROMYCI														
CLINDAMYCIN PHOSPHATE; TRETINOIN														
DAPSONE														
DAPSONE														
TAZAROTENE														
TAZAROTENE														
TRETINOIN														
CLINDAMYCIN PHOSPHATE														
CLINDAMYCIN PHOSPHATE														
CLINDAMYCIN PHOSPHATE; TRETINOIN														
DICLOFENAC SODIUM														
METRONIDAZOLE														
METRONIDAZOLE														
LIDOCAINE HYDROCHLORIDE														
DICLOFENAC SODIUM														

PSGs for topical non-aqueous gels

Active Ingredient	NSD	Visual appearance and texture	Microscopic images	Rheology	Specific gravity	Drying rate	pH	PSD	GSD	Water activity	Oleaginous components	IVRT	IVPT	PK
PODOFILOX SIROLIMUS BEXAROTENE TRETINOIN TRETINOIN MECHLORETHAMINE HYDROCHLORIDE KETOCONAZOLE														

PSGs for topical creams

Active Ingredient	Visual						GSD	PSD	Water activity	Drying rate	Oleaginous components	IVRT	IVPT	PK	VC
	NSD	appearance and texture	Microscopic images	Rheology	pH	Specific gravity									
ACYCLOVIR; HYDROCORTISONE FLUOROURACIL PENCICLOVIR CLASCOTERONE AZELAIC ACID ACYCLOVIR CALCIPOTRIENE METRONIDAZOLE OZENOXACIN PIMECROLIMUS DOXEPIN HYDROCHLORIDE IVERMECTIN															
BETAMETHASONE DIPROPIONATE; CALCIPOTRIENE FLUOROURACIL FLUOROURACIL METRONIDAZOLE OXYMETAZOLINE HYDROCHLORIDE TAZAROTENE															
BETAMETHASONE DIPROPIONATE; CLOTRIMAZOLE MUPIROCIN CALCIUM SILVER SULFADIAZINE DOCOSANOL															
KETOCONAZOLE LULICONAZOLE AMMONIUM LACTATE BUTENAFINE HYDROCHLORIDE BUTENAFINE HYDROCHLORIDE															

Applied to skin with no stratum corneum

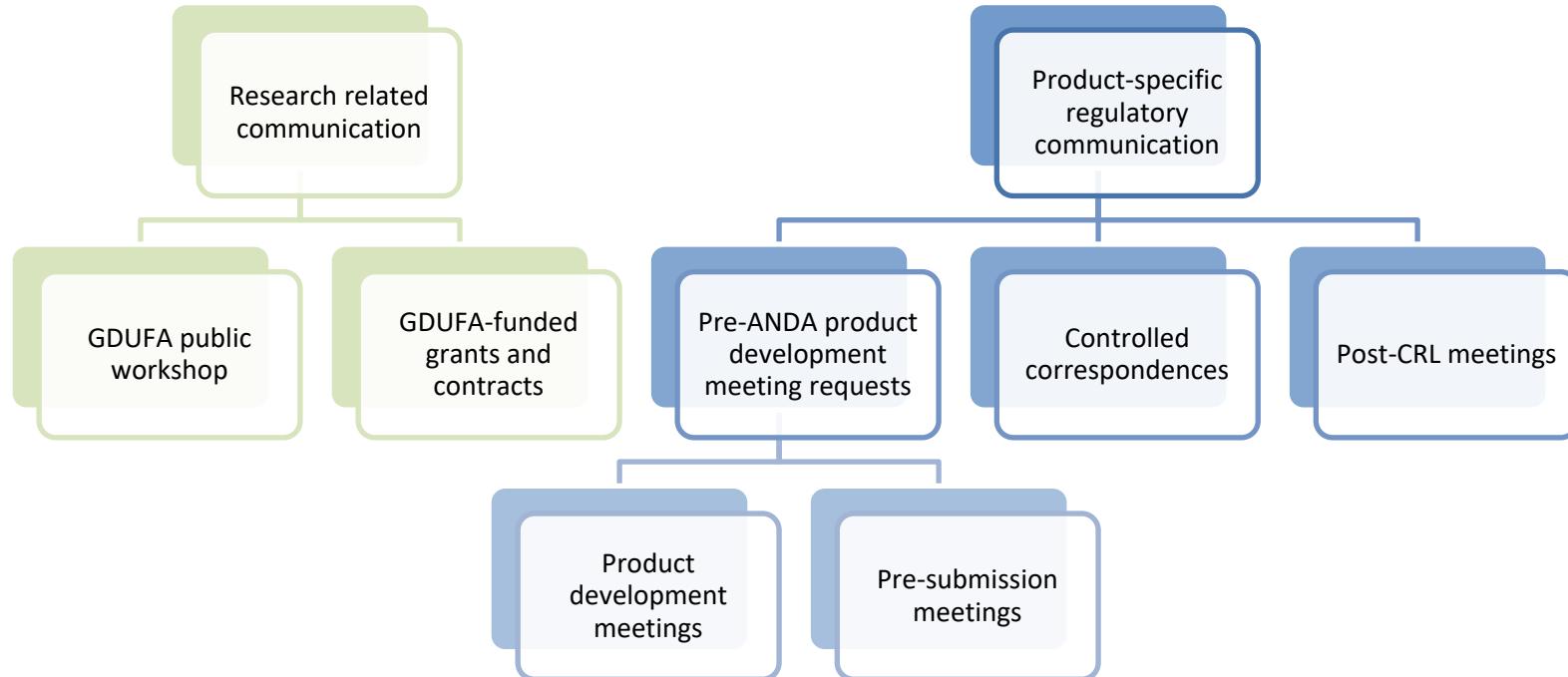
Unique physicochemical properties/dosage form

Site of action is in the superficial stratum corneum

PSGs for topical lotions

Active Ingredient	NSD	Visual appearance and texture	Microscopic images	Rheology	pH	Specific gravity	GSD	Water activity	PSD	Drying rate	Oleaginous components	IVRT	IVPT	Ex vivo pediculicide hair tuft assay	PK
CLINDAMYCIN PHOSPHATE															
CLOBETASOL PROPIONATE															
HALOBETASOL PROPIONATE															
HALOBETASOL PROPIONATE; TAZAROTENE															
METRONIDAZOLE															
TAZAROTENE															
BETAMETHASONE DIPROPIONATE; CLOTRIMAZOLE															
AMMONIUM LACTATE															
ABAMETRAPIR															
BENZYL ALCOHOL															
IVERMECTIN															

Site of action is in the superficial stratum corneum


Site of action is an external organism (e.g., lice)

PSGs for topical ointments

Active Ingredient	NSD	Visual appearance and texture	Microscopic images	Rheology	Specific gravity	Oleaginous components	PSD	GSD	pH	Water activity	Drying rate	IVRT	IVPT	PK	VC
CRISABOROLE															
CALCIPOTRIENE															
TACROLIMUS															
TACROLIMUS															
HALOBETASOL PROPIONATE															
BETAMETHASONE DIPROPIONATE: CALCIPOTRIENE															
MICONAZOLE NITRATE; PETROLATUM, WHITE; ZINC OXIDE															
ACYCLOVIR															
LIDOCAINE															
MUPIROCIN															
TIRBANIBULIN															

Communication with the Agency

GDUFA: Generic Drug User Fee Amendments; CRL: Complete response letter

[Office of Generic Drugs Science & Research Program](#)

[Guidance for industry Formal Meetings Between FDA and ANDA Applicants of Complex Products Under GDUFA](#)

Summary

- PSGs for topical products contain harmonized recommendations in alignment with the relevant general guidances.
- The recommendations within a characterization-based BE approach for topical products are product-specific and are based on an understanding of the microstructure and performance of the drug product.

Acknowledgements

U.S. Food and Drug Administration

- Priyanka Ghosh, PhD
- Tannaz Ramezanli, PharmD, PhD
- Mengmeng Niu, PhD
- Ying Jiang, PhD
- Jackson Russo, PhD
- Lingxiao Xie, PhD
- Eleftheria Tsakalozou, PhD
- Sam Raney, PhD
- Markham Luke, MD, PhD
- Robert Lionberger, PhD
- Pahala Simamora, PhD

- Bing Cai, PhD
- Ahmed Zidan, PhD
- Hiren Patel, PhD
- Office of Research and Standards PSG Team
- Office of Generic Drug Policy

Research Collaborator

Funding for the project for which results were shown was made possible, in part, by the FDA through:

- GDUFA Award U01FD005223
 - Narasimha Murthy, PhD, University of Mississippi

Resources

- [Product-Specific Guidances for Generic Drug Development website](#)
- [“General Considerations for the “No Significant Difference” Evaluation for a Proposed Generic Formulation” \(presented on 12/06/2022\)](#)
- [Draft Guidance for industry: *Physicochemical and Structural \(Q3\) Characterization of Topical Drug Products Submitted in ANDAs* \(October 2022\)](#)
- [Draft Guidance for industry: *In Vitro Release Test \(IVRT\) Studies for Topical Drug Products Submitted in ANDAs* \(October 2022\)](#)
- [Draft Guidance for industry: *In Vitro Permeation Test \(IVPT\) Studies for Topical Drug Products Submitted in ANDAs* \(October 2022\)](#)
- [Draft Guidance for industry: *Bioequivalence Studies with Pharmacokinetic Endpoints for Drugs Submitted Under an ANDA* \(August 2021\)](#)
- [Final Guidance for industry: *Controlled Correspondence Related to Generic Drug Development* \(December 2020\)](#)
- [Final Guidance for industry: *Formal Meetings Between FDA and ANDA Applicants of Complex Products Under GDUFA* \(October 2022\)](#)
- [Upcoming Product-Specific Guidances for Generic Drug Product Development website](#)
- [Office of Generic Drugs Science & Research Program](#)

Questions?

Megan Kelchen, PhD

Senior Pharmacologist

Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs

CDER | U.S. FDA

