

Impact of GDUFA Regulatory Science and Research Program on Topical Product Availability

Dermatology Innovation Webinar

The Science Behind Innovations In Topical Generic Drug Assessment
Opportunities And Challenges

Priyanka Ghosh, PhD

Lead Pharmacologist

Office of Research and Standards
Office of Generic Drugs | CDER | U.S. FDA

September 19, 2023

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Strategy for Research

Components and Composition

Prospective Generic Product

“No Significant Difference” in Formulation (Characterization Based Approach)

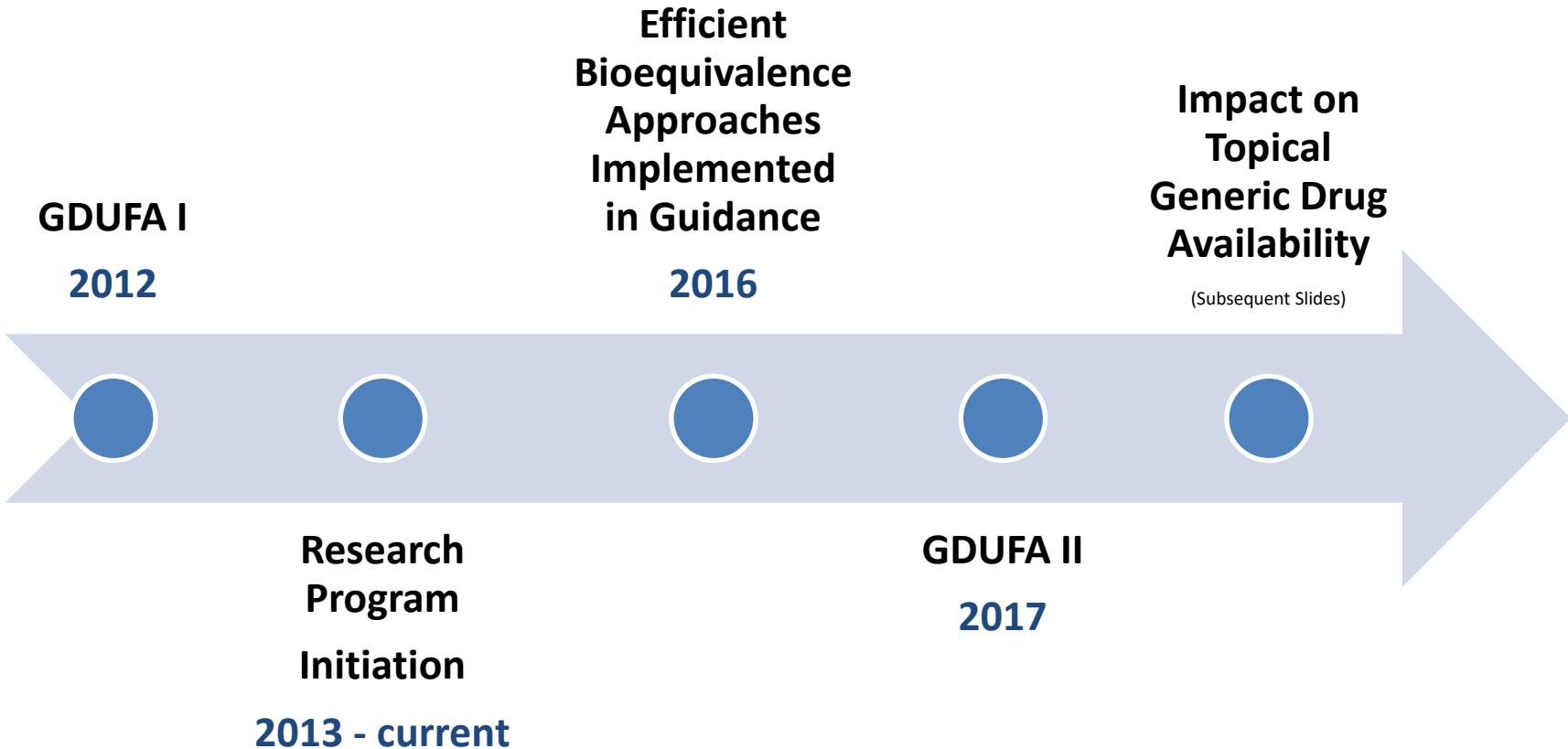
- *Characterization of the Physical and Structural Properties (Q3)*
- ***IVRT (In Vitro Release Test)***
- ***IVPT (In Vitro Permeation Test)***
- ***In vivo systemic pharmacokinetic (PK) studies***
- ***In silico-based tools (Modeling and Simulation)***

“Differences” in Formulation (Currently Under Development)

- *Impact of Formulation Differences on Thermodynamic Potential*
- ***Cutaneous PK Approaches***
Dermal Microdialysis
Dermal Open Flow Microperfusion
Raman Spectroscopy-based Tools
- ***Comparative Clinical Endpoint Studies***

Strategy for Research

Components and Composition


“No Significant Difference” in Formulation (Characterization Based Approach)

- *Characterization of the Physicochemical and Structural Properties (Q3)*
- ***IVRT (In Vitro Release Test)***
- ***IVPT (In Vitro Permeation Test)***
- ***In vivo systemic pharmacokinetic (PK) studies***
- ***In silico-based tools (Modeling and Simulation)***

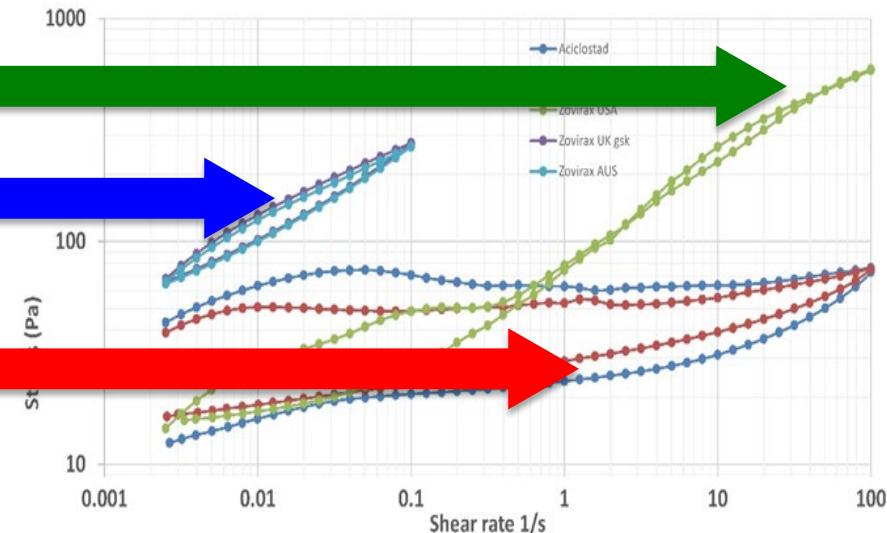
“Differences” in Formulation (Currently Under Development)

- *Impact of Formulation Differences on Thermodynamic Potential*
- *Cutaneous PK Approaches*
Dermal Microdialysis
Dermal Open Flow Microperfusion
Raman Spectroscopy-based Tools
- *Comparative Clinical Endpoint Studies*

Timeline for the Program

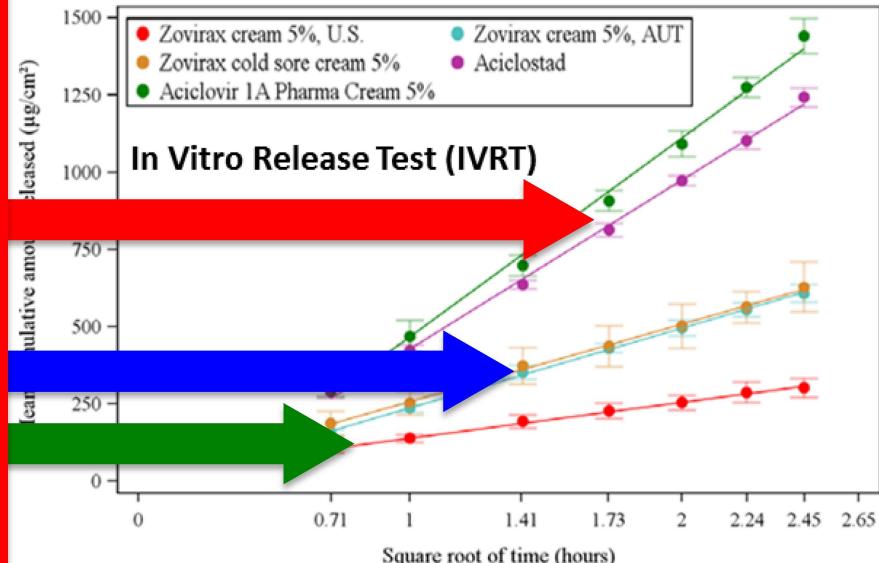
Research Portfolio

*Supporting the Development of the **Characterization Based Approaches***

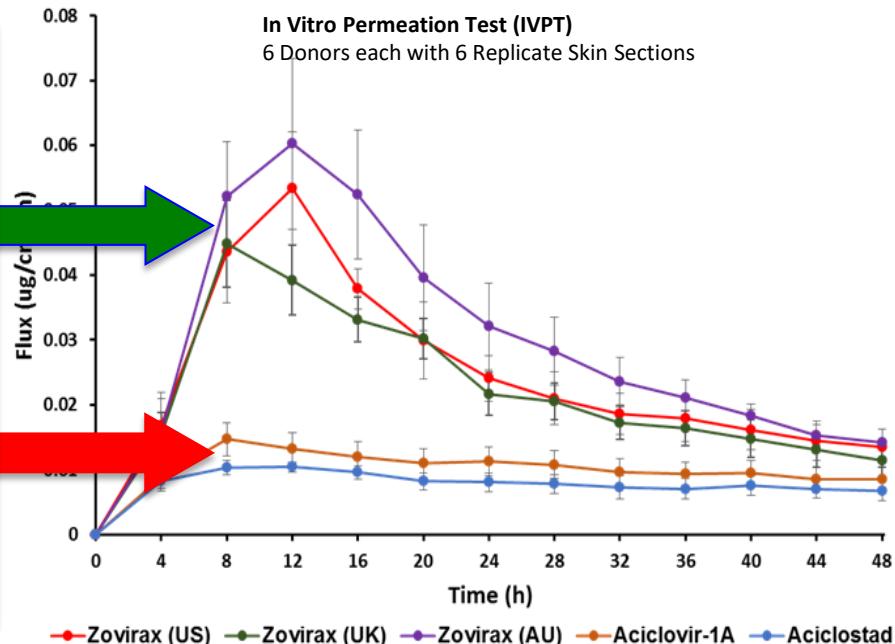

- *1U01FD004947 Bioequivalence of Topical Drug Products: In Vitro-In Vivo Correlations with [Audra Stinchcomb at University of Maryland](#)*
- *1U01FD005233 Topical Products and Critical Quality Attributes with [Sathyanarayana Murthy at University of Mississippi](#)*
- *1U01FD005226 Characterization of Critical Quality Attributes for Semisolid Topical Drug Products with [Michael Roberts at University of South Australia](#)*
- *HHSF223201610125C Assessment of the In Vitro Percutaneous Absorption, In Vitro Rate of Release, and Physicochemical Properties of Selected Commercially Available AT Rated Ointment Formulations with [Shanna Geigle at QPS, LLC](#)*
- *1U01FD006521 Characterization of Key System Parameters of Mechanistic Dermal PBPK Models in Various Skin Diseases and Performance Verification of the Model Using Observed Local and Systemic Concentrations with [Sebastian Polak at Simcyp, Ltd.](#)*
- *1U01FD006522 Formulation Drug Product Quality Attributes in Dermal Physiologically-Based Pharmacokinetic Models for Topical Dermatological Drug Products and Transdermal Delivery Systems with [Michael Roberts at University of Queensland](#)*
- *1U01FD006526 Assessment of Transdermal Drug Product Quality and Performance Attributes via Enhanced Virtual Bioequivalence Simulations with [Jessica Spires at Simulations Plus, Inc](#)*

Correlation Between Q3 & Bioavailability

Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum				
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
Density (g/cc)	1.02	1.02	1.02	1.01
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	99.7 ± 1.7
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate
Crystalline Habit	Rectangular	Rectangular	Rectangular	Ovoid
Particle size (d50) (µm)	3.8	2.5	3.4	6.8
pH	7.74	7.96	7.54	4.58
Work of Adhesion	59	81	60	17
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37
Drying Rate (T-30%)	>12h	~8h	~7h	<1h
Water Activity	0.75	0.73	0.74	0.95


Thixotropic Rheology

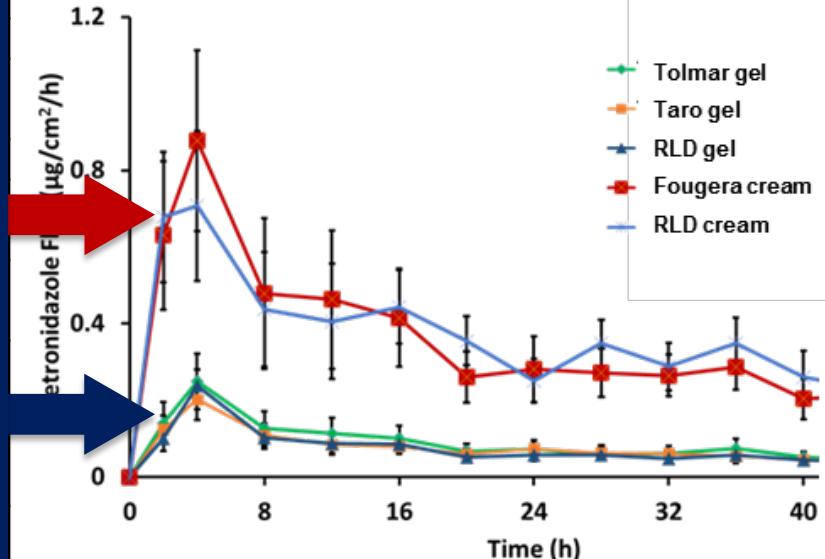
Correlation Between Q3 & Bioavailability



Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	liquid Paraffin	Liquid Paraffin	Viscous Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
Density (g/cc)	1.02	1.02	1.02	1.02
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	
Crystalline Habit	Rectangular	Rectangular	Ovoid	Ovoid
Particle size (d50) (µm)	3.8			
pH	7.74	7.96	7.54	4.58
Work of Adhesion	59	81	60	17
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37
Drying Rate (T-30%)	>12h	~8h	~7h	<1h
Water Activity	0.75	0.73	0.74	0.95

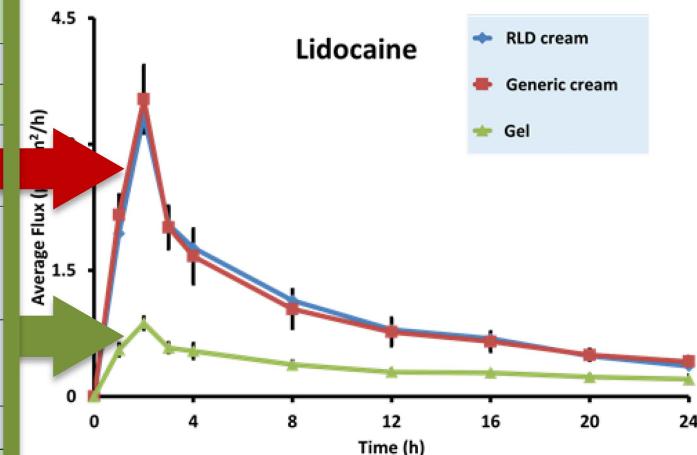
Correlation Between Q3 & Bioavailability

Zovirax (USA)	Zovirax (UK)	Zovirax (Austria)	Aciclostad (Austria)	Aciclovir-1A (Austria)	
Water	Water	Purified water	Water	Water	
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin	
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline	
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol	
SLS	SLS	SLS			
Poloxamer 407	Poloxamer 407	Poloxamer 407			
			Dimethicone 20	Dimethicone	
			Glyceryl Mono	Glyceryl Mono	
			Stearate	Stearate	
			Macrogol	Polyoxyethylene	
			stearate	stearate	
Density (g/cc)	1.02	1.02	1.02	1.02	
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	99.7 ± 1.7	98.3 ± 2.6
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate
Crystalline Habit	Rectangular	Rectangular	Rectangular	Ovoid	Ovoid
Particle size (d50) (µm)	3.8	2.5	3.4	6.8	6
pH	7.74	7.96	7.54	4.58	6.05
Work of Adhesion	59	81	60	17	18
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37	0.26
Drying Rate (T-30%)	>12h	~8h	~7h	<1h	<1h
Water Activity	0.75	0.73	0.74	0.95	0.95


Correlation Between Q3 & Bioavailability

Quality Attribute	MetroCream® (RLD Cream)	Generic Cream (Fougera)	Metrogel® (RLD Gel)	Generic Gel (Tolmar)	Generic Gel (Taro)
pH	4.8	5.1	5.2	5.0	5.4
Density (g/cc)	1.02	1.02	1.01	1.02	1.02
WOA (g.sec)	57.6	63.9	39.4	43.9	42.0
Particle size (µm)	Active ingredients				
Drug in Aq (mg/g)	4.20	2.92	---	---	---
Drug in Oil (mg/g)	2.58	3.94	---	---	---
Solvent Activity	0.977	0.974	0.992	0.994	1.002
Globule size, d_{50} (µm)	2.8	2.2	---	---	---
Drying, T_{30} (min)	17	11.4	5.5	4.7	6.5

In Vitro Permeation Test


RLD = Reference Listed Drug

Correlation Between Q3 & Bioavailability

Q3 Attribute	Lidocaine2.5%, Prilocaine2.5% RLD Cream	Lidocaine-2.5%, Prilocaine-2.5% Generic Cream	Lidocaine-2.5%, Prilocaine-2.5% Gel
pH	9.22 ± 0.08	8.92 ± 0.03	7.76 ± 0.05
Density (g/cc)	1.0142 ± 0.0002	1.0148 ± 0.0002	1.0374 ± 0.0001
WOA (g.sec)	59.427 ± 0.338	65.893 ± 0.614	3.186 ± 0.207
Particle Size of API (µm)	Lidocaine and Prilocaine completely dissolved in the formulation		
Globule Size, d50 (µm)	3.30	3.00	---
Drug in Aqueous Phase (µg/g)	Lidocaine 1.64 ± 0.06 Prilocaine 1.99 ± 0.06	Lidocaine 1.74 ± 0.12 Prilocaine 2.11 ± 0.15	---
Drug in Oil Phase (µg/g)	Lidocaine 23.45 ± 0.36 Prilocaine 23.47 ± 0.18	Lidocaine 23.21 ± 0.18 Prilocaine 23.12 ± 0.22	---
Water Activity	1.003 ± 0.002	1.004 ± 0.007	1.002 ± 0.005
Drying, T50 (min)	3.37 ± 0.15	3.82 ± 0.73	7.9 ± 0.46
Rheology Yield Stress(Pa)	36.7 ± 1.2	35.7 ± 0.6	15.7 ± 2.3

Implementation in Guidances

Contains Nonbinding Recommendations

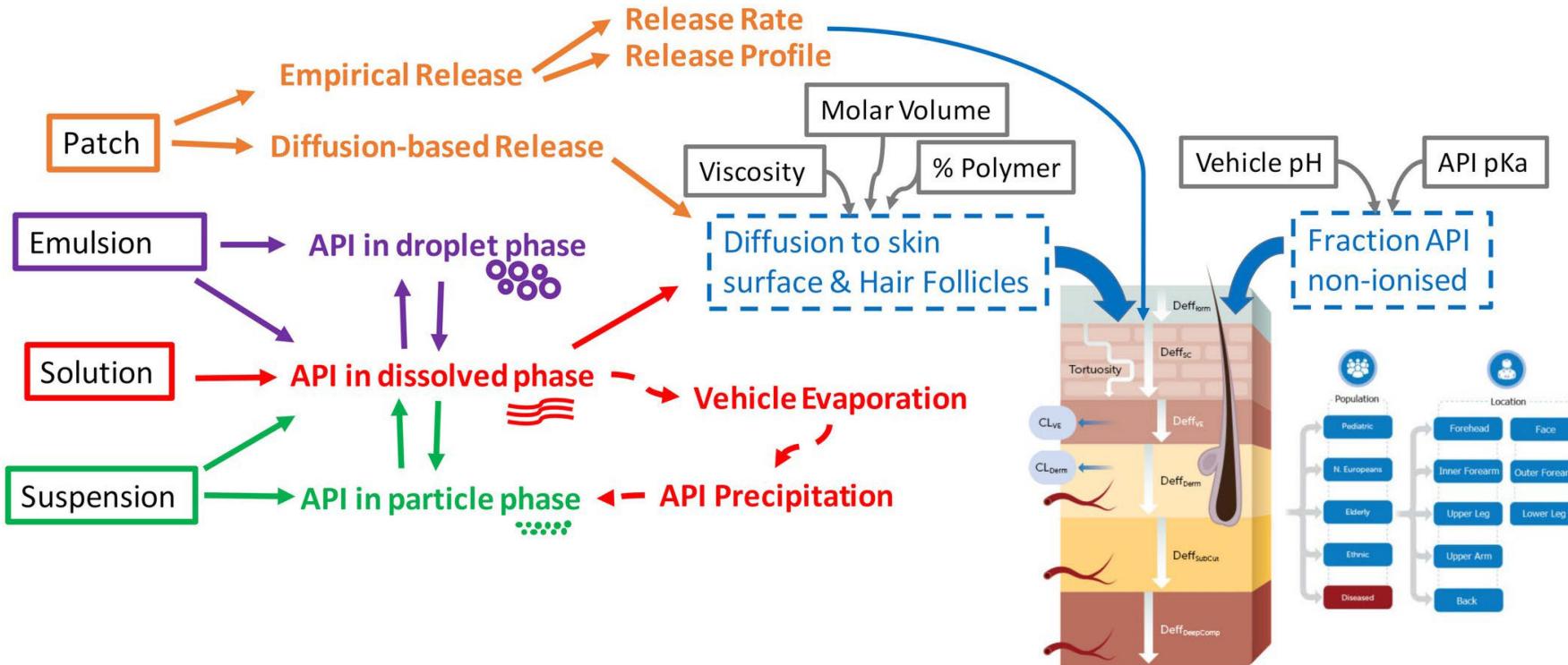
Draft Guidance on Acyclovir

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

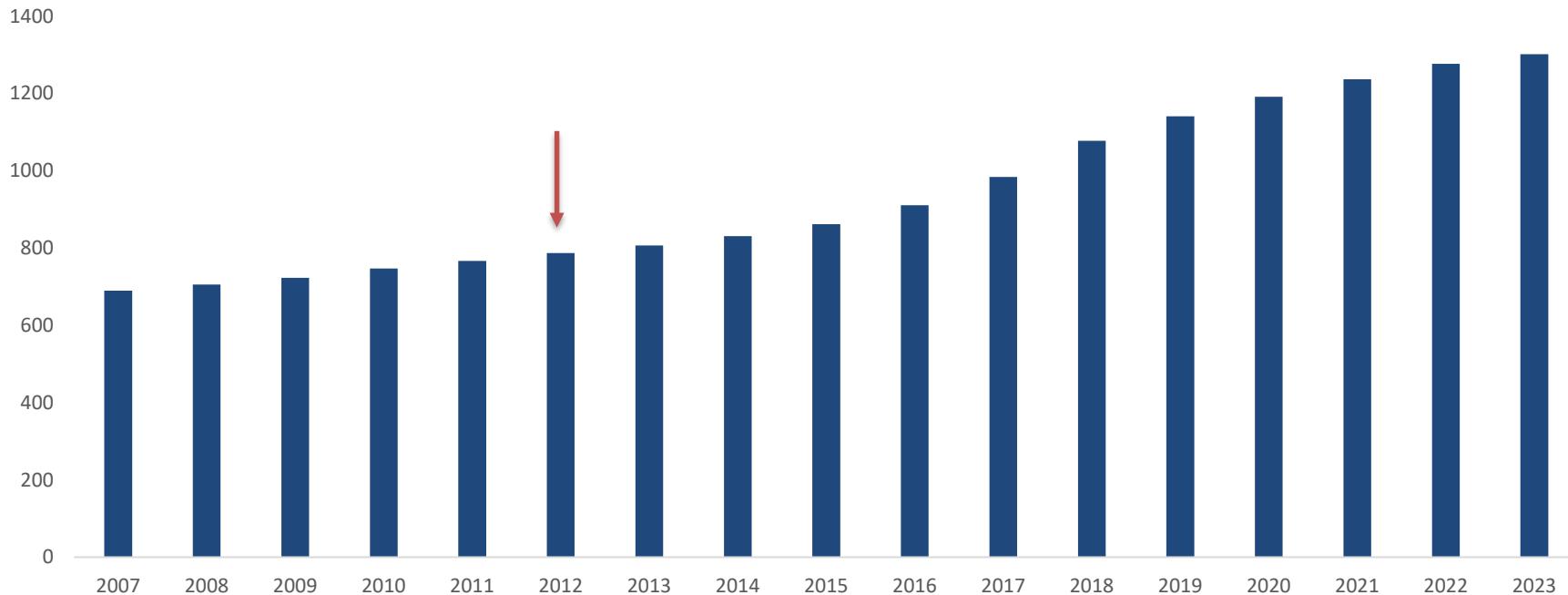
Active Ingredient: Acyclovir

Dosage Form; Route: Cream; topical

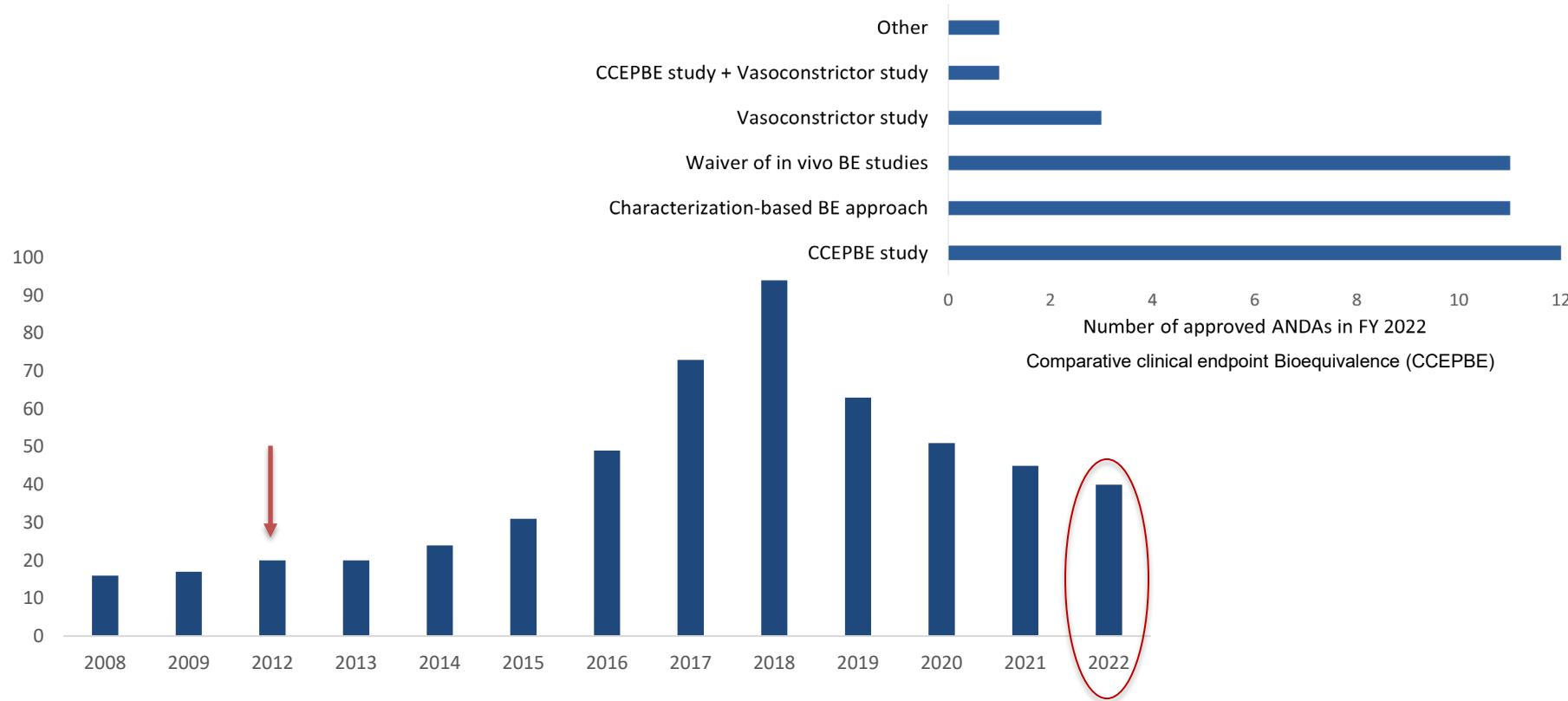
Recommended Studies: Two options: in vitro or in vivo study


I. In vitro option:

To qualify for the in vitro option for this drug product the following criteria should be met:

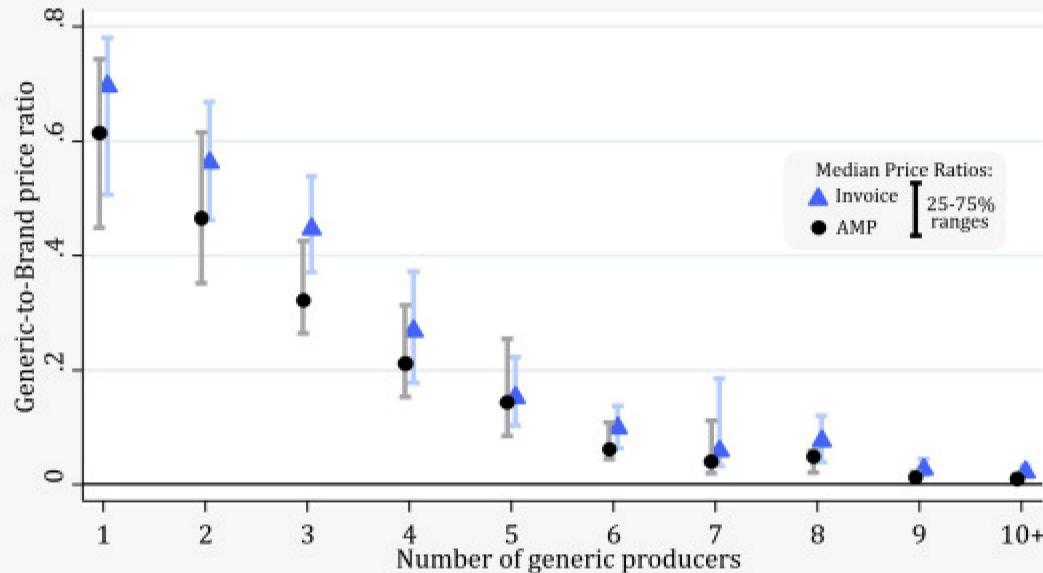

- A. The test and Reference Listed Drug (RLD) products are qualitatively (Q1) and quantitatively (Q2) the same as defined in the Guidance for Industry *ANDA Submissions – Refuse-to-Receive Standards*, Revision 1 (May 2015).¹
- B. The test and RLD products are physically and structurally similar based upon an acceptable comparative physicochemical characterization of a minimum of three lots of the test and three lots (as available) of the RLD product.
- C. The test and RLD products have an equivalent rate of acyclovir release based upon an acceptable in vitro release test (IVRT) comparing a minimum of one lot each of the test and RLD products using an appropriately validated IVRT method.
- D. The test and RLD products are bioequivalent based upon an acceptable in vitro permeation test (IVPT) comparing the rate and extent of acyclovir permeation through excised human skin from a minimum of one lot each of the test and RLD products using an appropriately validated IVPT method.

Additional comments: Specific recommendations are provided below.


Modeling and Simulation Toolkit

Topical Product Availability

Approval of Topical Generic Products



Impact of Generic Product Availability

Generic Competition and Drug Prices

Median generic prices relative to brand price before generic entry

Generic drug products with initial generic entry from 2015-2017.

Based on IQVIA NSP invoice-based sales and units sold to pharmacies (▲) and average manufacturer prices (AMP) reported to CMS (●).

Guidances for Topical Products

- October 2022
 - New draft guidances for industry:
 - *Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs*
 - *In Vitro Release Test (IVRT) Studies for Topical Drug Products Submitted in ANDAs*
 - *In Vitro Permeation Test (IVPT) Studies for Topical Drug Products Submitted in ANDAs*
 - Revised draft guidance for industry:
 - *Topical Dermatologic Corticosteroids: In Vivo Bioequivalence*
 - 80+ new or revised PSGs for topical products

Contains Nonbinding Recommendations

Draft – Not for Implementation

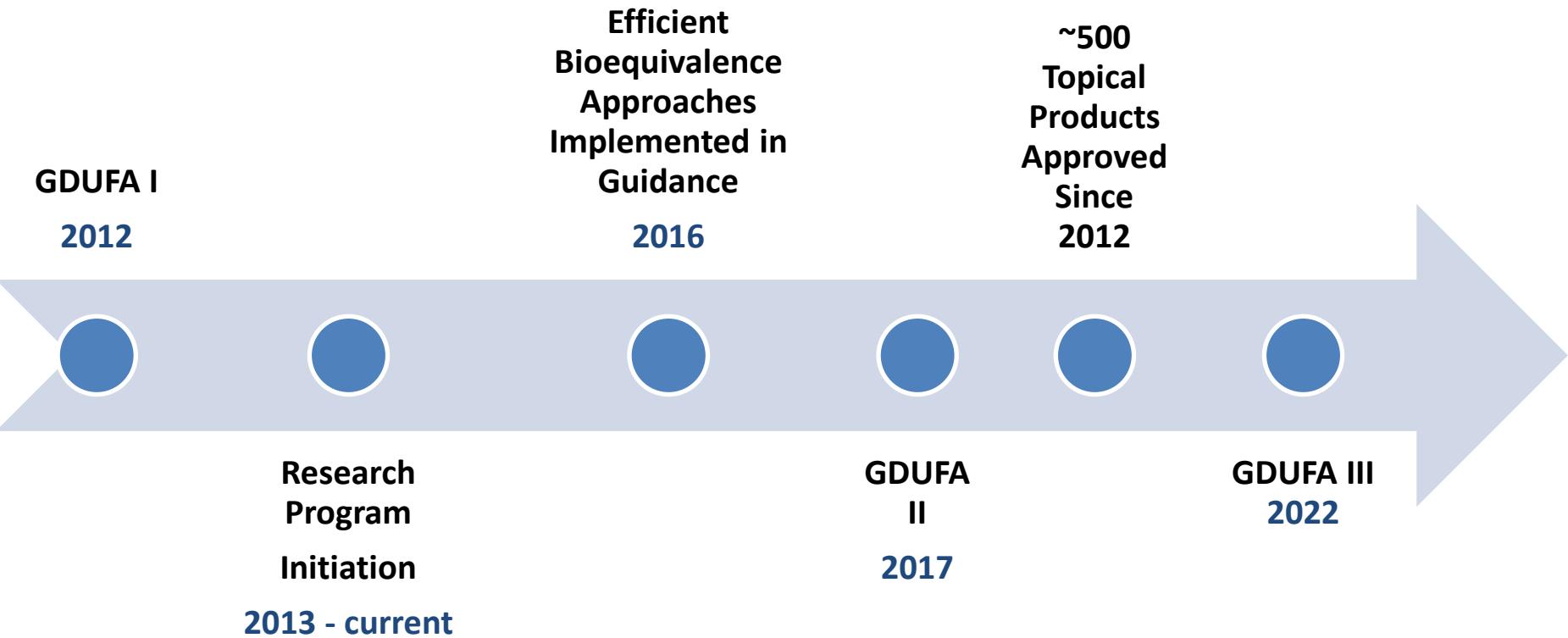
Draft Guidance on Doxepin Hydrochloride

October 2022

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

In general, FDA's guidance documents do not establish legally enforceable responsibilities. Instead, guidances describe the Agency's current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word *should* in Agency guidances means that something is suggested or recommended, but not required.

Active Ingredient: Doxepin hydrochloride


Dosage Form; Route: Cream; topical

Recommended Studies: Two in vitro bioequivalence studies, one in vivo bioequivalence study with pharmacokinetic endpoints, and other characterization tests

To demonstrate bioequivalence for doxepin hydrochloride topical cream, 5% using a combination of in vitro studies and an in vivo study with pharmacokinetic endpoints, the following criteria should be met:

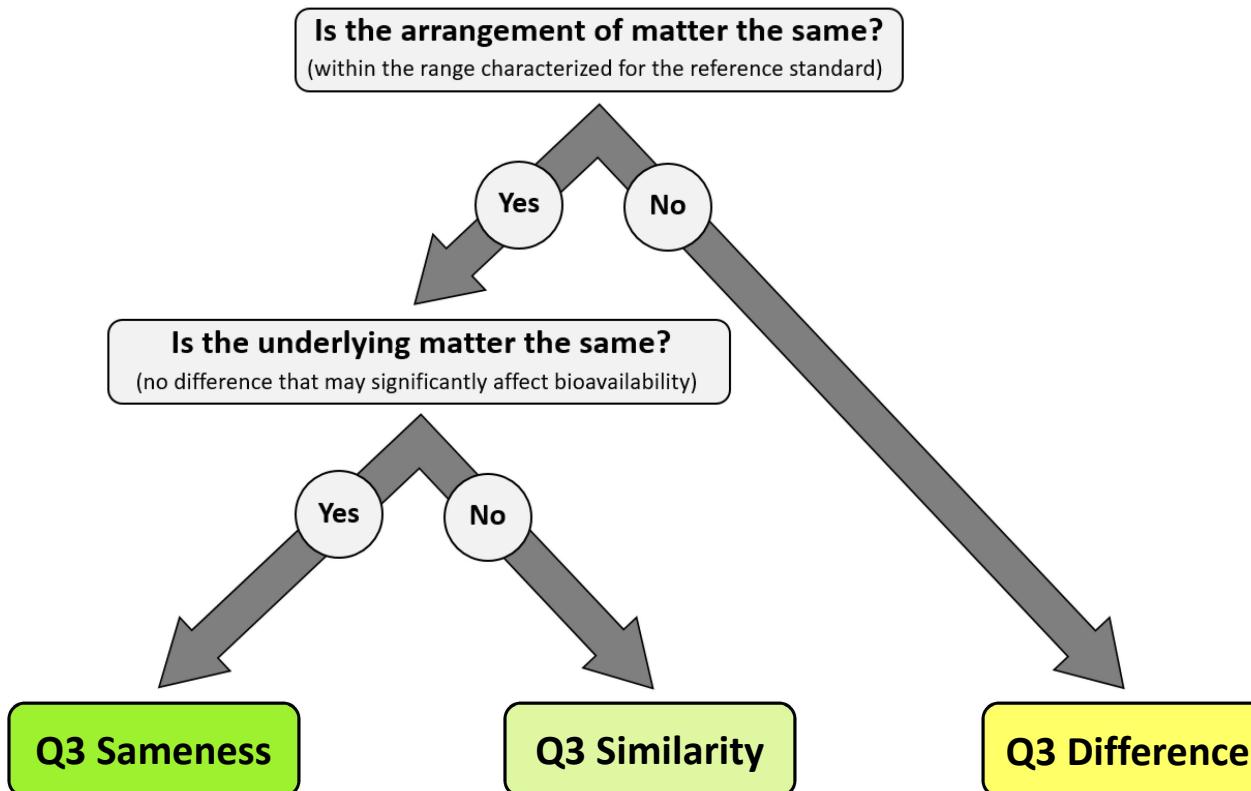
1. The test product should contain no difference in inactive ingredients or in other aspects of the formulation relative to the reference standard that may significantly affect the local or systemic availability of the active ingredient. For example, if the test product and reference standard are qualitatively (Q1) and quantitatively (Q2) the same, as defined in the most recent version of the FDA guidance for industry on *ANDA Submissions – Refuse-to-Receive Standards*², and the criteria below are also satisfied, the bioequivalence of the test product may be established using a characterization-based bioequivalence approach.
2. The test product and reference standard should have the same physicochemical and structural (Q3) attributes, based upon acceptable comparative Q3 characterization tests with a minimum of three batches of the test product and three batches (as available) of the reference standard. The test product and reference standard batches should ideally represent the product at different ages throughout its shelf life. Refer to the most recent version of the FDA guidance for industry on *Physicochemical and Structural (Q3) Characterization of Topical Drug Products Submitted in ANDAs*³ for additional information regarding comparative Q3 characterization tests. The comparison of the test

Timeline for the Program

Next Steps

Components and Composition

Prospective Generic Product


“No Significant Difference” in Formulation (Characterization Based Approach)

- *Characterization of the Physical and Structural Properties (Q3)*
- *IVRT (In Vitro Release Test)*
- *IVPT (In Vitro Permeation Test)*
- *In vivo systemic pharmacokinetic (PK) studies*
- *In silico-based tools (Modeling and Simulation)*

“Differences” in Formulation (Currently Under Development)

- *Impact of Formulation Differences on Thermodynamic Potential*
- *Cutaneous PK Approaches*
Dermal Microdialysis
Dermal Open Flow Microperfusion
Raman Spectroscopy-based Tools
- *Comparative Clinical Endpoint Studies*

Understanding Q3 Similarity

Summary

- Topical drug products are generally complex dosage forms
- An elaborate understanding of the correlation between Q3 and bioavailability has led to the development of efficient characterization-based approaches for topical gels, creams, lotions, etc., supported by data generated within the GDUFA regulatory science and research program
- Availability of efficient approaches have contributed to the availability of more generic products on the market, and a corresponding decrease in prices have been observed
- The goal of the GDUFA regulatory science and research program is to continue to facilitate research to enhance our understanding of how the formulation and microstructure of the product influences bioavailability

Acknowledgements

U.S. Food & Drug Administration

- Sam Raney, PhD
- Tannaz Ramezanli, PharmD, PhD
- Megan Kelchen, PhD
- Jackson Russo, PhD
- Ahmed Zidan, PhD
- Eleftheria Tsakalozou, PhD
- Andrew Babiskin, PhD
- Darby Kozak, PhD
- Lei Zhang, PhD
- Markham Luke, MD PhD

Research Collaborators

Collaborations within FDA

*All of our collaborators within the
GDUFA Regulatory Science and
Research Program*

Thank You

Priyanka Ghosh, Ph.D.
Lead Pharmacologist

Office of Research and Standards (ORS), Office of Generic Drugs (OGD)
CDER | U.S. FDA