



# *Identification of Research Needs During Product Development Prior to ANDA Submission*

*Fiscal Year 2022 GDUFA Public Workshop  
May 9th – 10th, 2022*

**Priyanka Ghosh, Ph.D.**

Acting Team Lead/ Co-chair of the Bioequivalence Standards for Topicals Committee  
Office of Research and Standards (ORS), Office of Generic Drugs (OGD)  
CDER | U.S. FDA

# Disclaimer

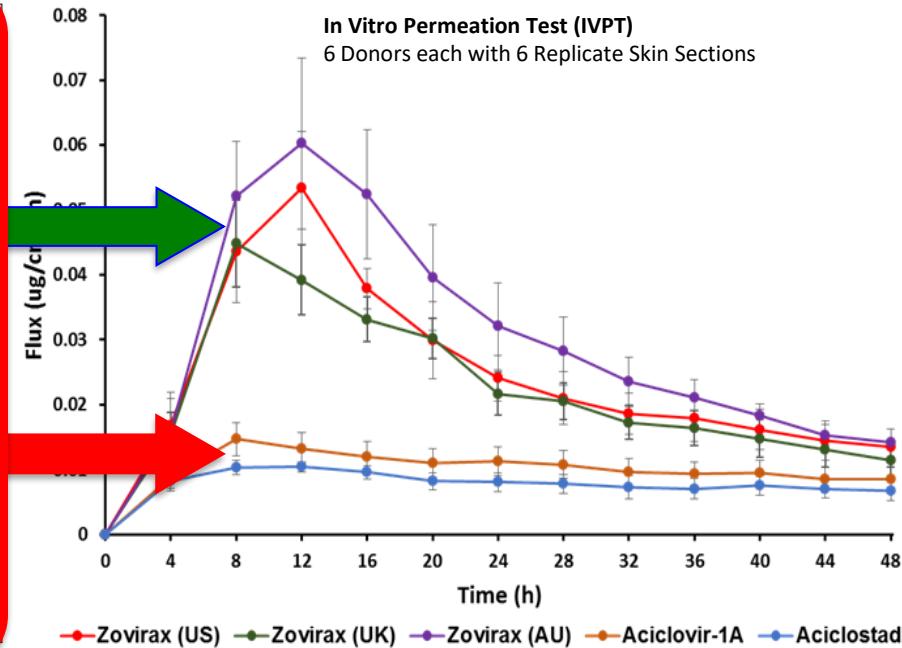


This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

# Learning Objectives

- Understanding the role of GDUFA research in development of bioequivalence (BE) recommendations
  - Using Topical Dermatological Dosage Forms
- Identification of research challenges/needs prior to submission of an ANDA
  - Topical Gels
  - Topical Creams/Lotions (Emulsions)
  - Topical Foams

# PSGs for Topical Dermatological Products



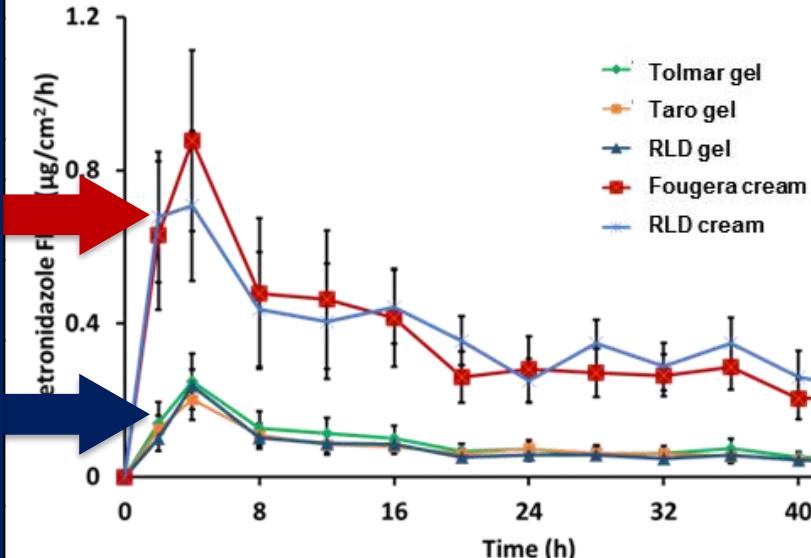

Potential ways for establishing BE for complex topicals:

- Comparative clinical endpoint BE studies
  - Clinical endpoint (CE)
  - Pharmacodynamic endpoint (e.g., vasoconstrictor (VC) studies)
- *Efficient* characterization-based BE studies (e.g., *in vitro*)
  - *in vitro*
  - *in vivo* pharmacokinetic (PK) studies

# In Vitro Characterization (Acyclovir)

| Zovirax (USA)            | Zovirax (UK)        | Zovirax (Austria)   | Aciclostad (Austria) | Aciclovir-1A (Austria) |             |
|--------------------------|---------------------|---------------------|----------------------|------------------------|-------------|
| Water                    | Water               | Purified water      | Water                | Water                  |             |
| Propylene glycol         | Propylene glycol    | Propylene glycol    | Propylene glycol     | Propylene glycol       |             |
| Mineral oil              | Liquid Paraffin     | Liquid Paraffin     | Liquid Paraffin      | Viscous Paraffin       |             |
| White petrolatum         | White soft paraffin | White Vaseline      | White Vaseline       | White Vaseline         |             |
| Cetostearyl alcohol      | Cetostearyl alcohol | Cetostearyl alcohol | Cetyl alcohol        | Cetyl alcohol          |             |
| SLS                      | SLS                 | SLS                 |                      |                        |             |
| Poloxamer 407            | Poloxamer 407       | Poloxamer 407       |                      |                        |             |
|                          |                     |                     | Dimethicone          | Dimethicone            |             |
|                          |                     |                     | Glyceryl Mono        | Glyceryl Mono          |             |
|                          |                     |                     | Stearate             | Stearate               |             |
|                          |                     |                     | Macrogol             | Polyoxyethylene        |             |
|                          |                     |                     | stearate             | stearate               |             |
| Density (g/cc)           | 1.02                | 1.02                | 1.02                 | 1.02                   |             |
| Content Uniformity (%)   | 97.9 ± 0.7          | 99.6 ± 1.4          | 100 ± 2.2            | 99.7 ± 1.7             | 98.3 ± 2.6  |
| Polymorphic Form         | 2,3 hydrate         | 2,3 hydrate         | 2,3 hydrate          | 2,3 hydrate            | 2,3 hydrate |
| Crystalline Habit        | Rectangular         | Rectangular         | Rectangular          | Ovoid                  | Ovoid       |
| Particle size (d50) (μm) | 3.8                 | 2.5                 | 3.4                  | 6.8                    | 6           |
| pH                       | 7.74                | 7.96                | 7.54                 | 4.58                   | 6.05        |
| Work of Adhesion         | 59                  | 81                  | 60                   | 17                     | 18          |
| Drug in Aq (mg/g)        | 0.49                | 0.64                | 0.49                 | 0.37                   | 0.26        |
| Drying Rate (T-30%)      | >12h                | ~8h                 | ~7h                  | <1h                    | <1h         |
| Water Activity           | 0.75                | 0.73                | 0.74                 | 0.95                   | 0.95        |




# In Vitro Characterization (Metronidazole)

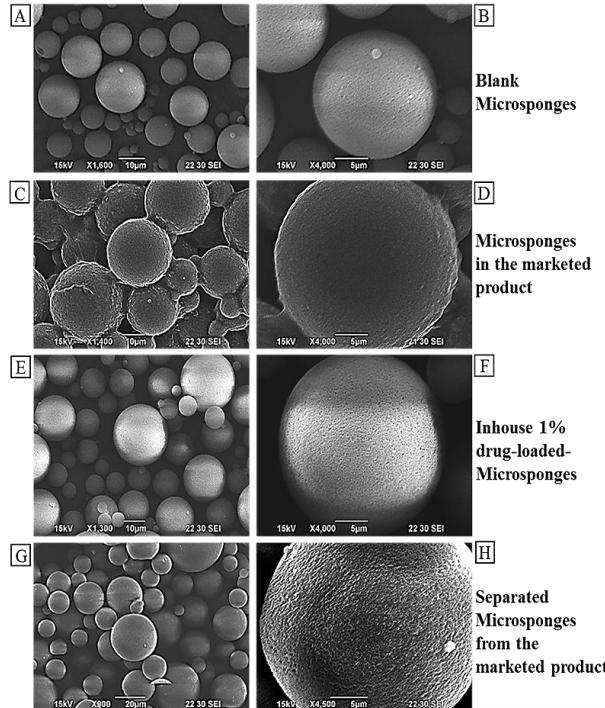


| Quality Attribute           | MetroCream® (RLD Cream) | Generic Cream (Fougera) | Metrogel® (RLD Gel) | Generic Gel (Tolmar) | Generic Gel (Taro) |
|-----------------------------|-------------------------|-------------------------|---------------------|----------------------|--------------------|
| pH                          | 4.8                     | 5.1                     | 5.2                 | 5.0                  | 5.4                |
| Density (g/cc)              | 1.02                    | 1.02                    | 1.01                | 1.02                 | 1.02               |
| WOA (g.sec)                 | 57.6                    | 63.9                    | 39.4                | 43.9                 | 42.0               |
| Particle size (µm)          | Active ingredients      |                         |                     |                      |                    |
| Drug in Aq (mg/g)           | 4.20                    | 2.92                    | ---                 | ---                  | ---                |
| Drug in Oil (mg/g)          | 2.58                    | 3.94                    | ---                 | ---                  | ---                |
| Solvent Activity            | 0.977                   | 0.974                   | 0.992               | 0.994                | 1.002              |
| Globule size, $d_{50}$ (µm) | 2.8                     | 2.2                     | ---                 | ---                  | ---                |
| Drying, $T_{30}$ (min)      | 17                      | 11.4                    | 5.5                 | 4.7                  | 6.5                |

## In Vitro Permeation Test

RLD = Reference Listed Drug




# PSGs for Topical Dermatological Products



## A Modular and Scalable Approach to BE Evaluation

- Sameness of inactive ingredient components and quantitative composition, e.g., qualitative (**Q1**) and quantitative (**Q2**) sameness
- **Q3** (Physical & Structural Characterization) as relevant to the nature of the product
- **IVRT** (In Vitro Release Test)
- **IVPT** (In Vitro Permeation Test) or another bio-relevant assay may be appropriate for some products
- In vivo systemic **PK** studies may be appropriate for some products

# Example 1 - Topical Gels



In-SEM SCA Raman analysis of Microsponges® at the surface and inside broken Microsponges®.

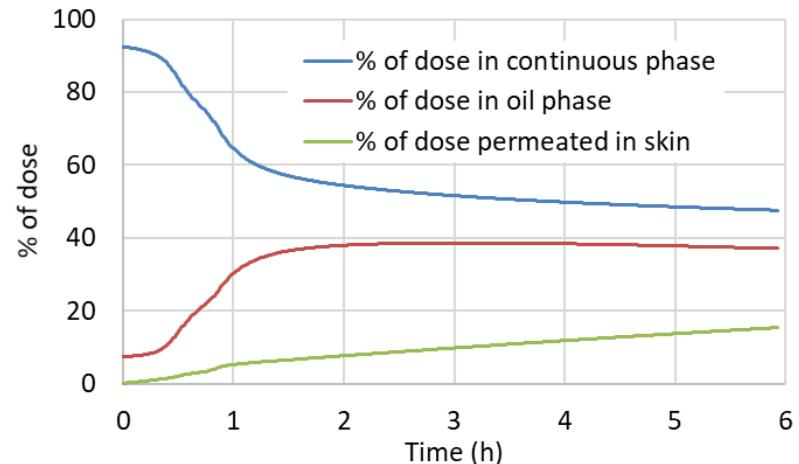
# Example 1 - Topical Gels

## Recommendations for a single phase topical dermatological gel may include

- Sameness of inactive ingredient components and quantitative composition, e.g., **Q1** and **Q2** sameness
- **Q3** as relevant to the nature of the product
- **IVRT**

## Additional considerations for products containing microparticles

- Characterization of the material constituting the particles (e.g., polymers)
- Assessment of particle size distribution of the particles
- Characterization of the morphology including the surface area and porosity
- Assessment of drug loading, drug distribution, localization and physical state, etc.
- Evaluation of drug release
- Evaluation of cutaneous pharmacokinetics


# Example 2 - Topical Emulsions



The lotion contains cetostearyl alcohol (2.5%); glycerin; glyceryl stearate SE (with potassium monostearate); isostearyl alcohol (2.5%); methylparaben (0.3%); sodium lauroyl sarcosinate; stearic acid; and purified water.

[https://www.accessdata.fda.gov/drugsatfda\\_docs/label/2019/050537s040,050600s017,050615s018lbl.pdf](https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/050537s040,050600s017,050615s018lbl.pdf)

Effect of **vehicle evaporation** on phase distribution and skin permeability of drug molecule



# Example 2 - Topical Emulsions

## Considerations for topical emulsions

- Challenges with conduct and data analysis of IVPT studies
  - Aberrant data
  - Outliers
- Potential additional challenges with products containing “prodrugs”
  - Selection of the receptor solution
  - Analyte to measure

# Example 3 - Topical Foams

**Active ingredient:** Clobetasol Propionate

**Form/Route:** Aerosol, Foam/Topical

## I. Waiver option:

- a. To qualify for a waiver of the in vivo bioequivalence (BE) study requirements under 21 CFR 320.22(b)(3), a generic Clobetasol Propionate Aerosol, Foam/Topical, 0.05% must be a solution for aerosolization, have the same active ingredient in the same concentration and dosage form as the reference listed drug product (RLD) and must not have an inactive ingredient or other change in formulation from the RLD that may significantly affect systemic or local availability.
- b. For a topical drug product with inactive ingredients that differ from the RLD or are present in significantly different amounts [as permitted by the chemistry, manufacturing and controls regulations for abbreviated new drug applications (ANDAs), 21 CFR 314.94(a)(9)(v)], the regulation specifies that the applicant must identify and characterize the differences and provide information demonstrating that the differences do not affect the safety or efficacy of the proposed drug product. If the generic Clobetasol Propionate Aerosol, Foam/Topical, 0.05% has different inactive ingredients compared to the RLD or differences in the amounts of the same inactive ingredients that are proportionally more than +/- 5% compared to the RLD, then the Office of Generic Drugs (OGD) may request a bioequivalence study with clinical endpoints to determine bioequivalence between the products
- c. For products applied to the scalp, differences in surfactants or potential penetration enhancers may change the distribution of the product over the scalp or penetration of the drug into the diseased tissues. Therefore, clinical endpoint bioequivalence studies are requested for generic shampoo products with differences in these ingredients that are proportionally more than +/- 5% compared to the RLD.
- d. To support the waiver request, data from the following comparative in vitro assays of test vs. reference are requested:
  - Microscopic Birefringence Analysis on the dispensed foam after complete collapse to determine whether any crystals of undissolved clobetasol propionate form during dispensing.
  - Time to Break Analysis, conducted at 30°C, 33°C, 35°C, and 40°C. Time to break is the time from dispensing to complete foam collapse (break). The testing should be done on at least 3 different lots of the RLD and at least 3 lots of the test product (with each lot manufactured separately).
  - Weight per volume of uncollapsed foam.

**Active Ingredient:** Clobetasol propionate

**Dosage Form; Route:** Aerosol, foam; topical

**Recommended Studies:** Two studies

1. Type of study: Pilot vasoconstrictor study  
 Design: A pilot dose duration-response study using the reference product  
 Strength: 0.05%  
 Subjects: Males and nonpregnant, nonlactating females, general population  
 Additional comments: Refer to the guidance for industry *Topical Dermatologic Corticosteroids: In Vivo Bioequivalence*.

2. Type of study: Pivotal vasoconstrictor study  
 Design: A pivotal bioequivalence study  
 Strength: 0.05%  
 Subjects: Males and nonpregnant, nonlactating females, general population  
 Additional comments: See comments above.

# Example 3 - Topical Foams

**Active Ingredient:** Azelaic acid

**Dosage Form; Route:** Aerosol, foam; topical

**Recommended Study:** One study

Type of study: Bioequivalence study with clinical endpoint

Design: Randomized, double blind, parallel, placebo controlled, in vivo

Strength: 15%

Subjects: Males and nonpregnant, nonlactating females with rosacea

Additional comments: Specific recommendations are provided below.

|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Finacea<br>(azelaic acid)<br>topical foam | Finacea Foam also contains benzoic acid, cetostearyl alcohol, dimethyl isosorbide, medium-chain triglycerides, methylcellulose, mono- and di-glycerides, polyoxyl 40 stearate, polysorbate 80, propylene glycol, purified water, sodium hydroxide, and xanthan gum<br><a href="https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207071s000lbl.pdf">https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207071s000lbl.pdf</a> |
| Amzeeq<br>(minocycline)<br>topical foam   | 4% Amzeeq topical foam contains the following inactive ingredients: soybean oil, coconut oil, light mineral oil, cyclomethicone, cetostearyl alcohol, stearic acid, myristyl alcohol, hydrogenated castor oil, white wax (beeswax), stearyl alcohol, docosanol....<br><a href="https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212379s000lbl.pdf">https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212379s000lbl.pdf</a> |

# Example 3 - Topical Foams

## Considerations for topical aerosol foams

- Understanding the microstructure of the foams and how inactive ingredients may influence the microstructure
- Relevant Q3 studies based on the complexity of the product
- Potential methodologies for conducting performance studies (e.g., IVRT and IVPT)

# Summary

- Topical dermatological drug products are generally complex dosage forms
- Efficient characterization-based approaches have been developed for topical gels, creams, lotions, etc., supported by data generated within the GDUFA regulatory science and research program
- However, there are complex formulations for which there are outstanding questions related to development of efficient characterization-based approaches
- The goal of the GDUFA regulatory science and research program as well as the pre-ANDA program is to facilitate early awareness and engagement with industry to be able to identify/develop strategies that can be utilized to facilitate generic drug development

# Acknowledgements



## Food and Drug Administration

- Sam Raney, PhD
- Markham C. Luke, MD, PhD
- Tannaz Ramezanli, PharmD, PhD
- Ahmed Zidan, PhD
- Megan Kelchen, PhD
- Mengmeng Niu, PhD
- Ying Jiang, PhD
- Khondoker Alam
- Eleftheria Tsakalozou
- Andrew Babiskin
- Lei Zhang, PhD
- Robert Lionberger, PhD

## Research Collaborators

Funding for projects which were discussed was made possible, in part, by the U.S. FDA through:

- *GDUFA Award U01FD005223  
(PI Prof. S. Narasimha Murthy,  
University of Mississippi)*

