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Alignment to OPQ Mission and CDER Research Goals/Objectives

www.fda. v

Major Research Areas 

go 2 

Analytical Science Formulation Science Adv. Manufacturing Modeling & 
Simulation 

• Chromatography (e.g., HPLC and 
UPLC core facility) 

• Mass spectrometry (e.g., high 
throughput RapidFire) 

• Nuclear magnetic resonance 
(NMR) spectroscopy 

• Advanced separation (e.g., field 
flow fractionation) 

• Product performance (e.g., 
dissolution, in vitro release test, 
IVRT) 

• Bioanalytics 
• Shelf-life Extension Program 

(SLEP) 

• Oral solids (e.g., tablets, 
capsules) 

• Topicals and transdermal 
• Ophthalmic 
• Injectables (e.g., liposomes, lipid-

nanoparticles, suspensions, 
emulsions, long-acting) 

• Implantable (e.g., intravaginal, 
intrauterine, intramuscular) 

• Biopharmaceutics (e.g., IVIVC, 
BCS, biowaivers, bioequivalence) 

• Nanotechnology 
• All other complex formulations 
• Excipients functionality (e.g., 

polymeric materials) 
• Quality-by-Design (QbD) 

• Continuous manufacturing 
(drug substances, solid oral 
dosage forms, complex 
formulations) 

• 3D printing 
• Process analytical technology 

(PAT) 
• Biomanufacturing (e.g., 

upstream/downstream 
processing, lyophilization) 

• Digital twins 
• In vitro in vivo correlation 

(IVIVC) 
• Modeling, e.g., CFD, MD, DEM, 

RTD 
• System/Process design (e.g., 

LabVIEW) 
• Data science, e.g., AI/ML, 

chemometrics 
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Challenges 

• Lack of connectivity 

• Lack of context 

• Lack of transparency 
▪ Historical Data 

Challenges • Limited automation 

Infinite Data Generation 

Causes • Need for manual data preparation 
▪ Operational Data 

• Fragmented and inconsistent data 
▪ Process Data 

• Lack of knowledge 
▪ Maintenance Data 

o Significant time spent on preparing vs analyzing data 

o Limited data are being used for reporting, analysis, and decision making 
Reasons 

o Very few data are being analyzed and acted upon real-time 

Solutions 

Digital Transformation | Data Integration | Data Contextualization 
www.fda.gov 3 
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Opportunities 

Capture, Process, Organize Information; Perform Analysis; Uncover Actionable Insights 

AI/ML Application 
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Use Case I: Study formulation design 
using ML applications 

Careful design of formulations: 

▪ Enhance efficacy of a new drug molecule 

▪ Reduce adverse effect 

▪ Improve bioavailability 

▪ Reduce off-target delivery 

Reference: Pharmaceutical excipients — quality, 
www.fda.gov regulatory and biopharmaceutical considerations 5 
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Challenges in Formulation Design 

Each drug has its own For a given material, there are wide range of variables that must 
unique physicochemical Trial-and-error in the be optimized during formulation preparation 
properties experiment design 

Extensive resources Time Cost 

6 

Multidimensional 

large dataset 
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PLGA-based Formulation Dataset 

▪ Biodegradable poly(lactide-co-

glycolide) (PLGA) 

microparticles have been used 

as long-acting injectable (LAI) 

drug delivery systems from 

past three decades. 

▪ Used for prolonged 

therapeutic effect and 

become the ideal formulation 

strategies for treatment of 

chronic disease. 

** The dataset for this study was derived from a previous FDA-funded research project at Akina, Inc. 

(BAA#75F40119C10096). www.fda.gov 7 
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Analysis 

o Predict In-Vitro release profile ML Application 

ML Application o Predict Drug-Polymer Ratio 

Surface 

Morphology 

Data 

IVRT 

Dissolution 

Process & 

Material 

Data 

24 variables 37 variables 
Release profile for 9 different 

formulations (time in days) 

o Predict Formulation Composition 

Significant Parameters 

Selection 

Predict Drug -Polymer 

ratio 

Predict Formulation 

Composition 

Predict In-vitro release 

behavior 

www.fda.gov 8 
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Overall Predictive Performance 

Prediction of Formulation Composition 

Machine Learning Techniques MSE MAE Accuracy (%) Correlation Matrix 
Linear Regression 0.001 0.02 99.5002 

Decision Tree 0 0 100 

Random Forest 0.3439 0.4 90 

Extra Trees Regressor 0.0042 0.0289 99.2778 

Prediction of Drug – Polymer Ratio 

Machine Learning Technique(s) MSE MAE Accuracy (%) 

Logistic Regression 0​ 0​ 100 

Decision Tree 0​ 0​ 100 

Random Forest Regressor​ 0​ 0​ 100 

Artificial Neural Network (ANN)​ 0.0021 0.0378 78 

www.fda.gov 9 
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In-Vitro Release Prediction 

❑ This AI method may serve as a tool in the future to help comparing the proposed generic products to reference listed drugs 

(RLD) by analyzing feature similarity across different formulations. 

❑ Such a tool may also help addressing some of the unique challenges in determining the bioequivalence of long acting 

injectable generic products. 

www.fda.gov 10 

www.fda.gov


       

        

          

-

-

honeycomb-like inner chamber 

Use Case II: Advanced Imaging Analysis 

to Improve understanding of 

Multivesicular Liposomes 

❑ Multivesicular liposome (MVL) is a lipid based drug delivery system for sustained release of the drugs with short 

half lives. 

❑ Multivesicular Lipid Liposomes (MVLs) are complex and oftentimes sensitive to the release environment. 

❑ Design and development of appropriate in vitro release test (IVRT) method is challenging for MVLs. 

www.fda.gov 11 
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9000 rpm 7000 rpm 0amaced MVLs 

Segmentation & Templating 
■ Identify Part icles , Pores. 

Background 
■ Create Template for different 

_segmentation 

Quantitation 
■ Count and 

Measure 

Internal Particle Size O strlbution ,20 
tic ,oo 

..... / ,,_,.,.-
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Output 
■ External & Interna l 

Particle Sizes 
■ Spatial Distribution 

External Particle Size Distribution 

MYl.010000 rpm ,.. . 

4 ,. ... :k 

D ameter (µm) 

AI-assisted image analysis 

The study aims to develop AI assisted image analysis method to provide quantitative assessment of 

the MVL morphology changes due to process parameter changes. 

www.fda.gov 12 
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Data Architecture for Advanced 

Manufacturing 
Data Sources 

Historian ELN PAT Instruments 

Data Integration and Contextualization 

Required: 

➢ Regulatory Compliance 

➢ *Data Catalog Data Warehouse 

➢ *FAIR Data Principles (Cloud Data, Data Lake) 

Data Analysis 

(Machine learning Application, Statistical Analysis) 

Model Development 

*FAIR (findability, accessibility, interoperability, 
Model Validation reusability) 

*Data Catalog: detailed inventory of all data assets in 

an organization 

Model Verification 

www.fda.gov 13 
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Closing Thought 
▪ In advanced manufacturing, data silos occur across different stages of 

production process, including design, production, quality control, and supply 

chain management. 

▪ The lack of seamless data exchange and collaboration among these 

domains can lead to inefficiencies, redundancies, and missed opportunities. 

▪ To fully leverage the potential of digital transformation in advanced 

manufacturing, breaking down data silos is essential. 

▪ The design process and its outcome need to be transparent for 

equipment manufacturer, pharma companies and regulatory agencies to 

achieve trust in every process step. 

www.fda.gov 14 
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