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Weight of Evidence Approach for OIDPs

Bioequivalence (BE) recommendations for metered dose inhalers (MDIs) and dry powder 
inhalers (DPIs) include formulation sameness and device similarity, in addition to

OIDPs: Orally Inhaled Drug Products
PK: pharmacokinetic; PD: pharmacodynamic

Weight-of-Evidence 
Approach to 
establish BE

In Vitro BE Studies

PK BE Studies 

Comparative Clinical 
Endpoint/

PD BE Studies

Alternative BE 
Approaches

OR
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Suggested Studies for 
Alternative BE Approaches for OIDPs1-4

Characterization of Emitted Sprays via velocity profiles and evaporation rates

Morphology Imaging Comparisons of the full range of residual drug particle sizes

More Realistic APSD Testing using representative mouth-throat models and inhalation profiles

Dissolution

Quantitative Methods and Modeling (e.g., Physiologically-based PK and computational fluid 
dynamics studies)

Alternative PK BE Studies

APSD: Aerodynamic Particle Size Distribution
PK: Pharmacokinetics

More Realistic APSD Testing using representative mouth-throat models and inhalation profiles
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More Realistic APSD Testing

• Compendial in vitro APSD testing allows for drug-specific particle size comparison of formulations  

• However, the currently recommended square wave testing provides limited information about clinical 
performance or the variability of lung delivery5

• In vitro APSD testing with realistic mouth-throat (MT) models and representative inhalation profiles (IPs) may 
be more predictive of in vivo deposition

– Conventional APSD testing (with the USP induction port) has been shown to under predict MT 
deposition,6 and would thus, overpredict lung deposition

• Results from more realistic APSD testing may be compared to the drug deposition reported in clinical literature 
to assess which in vitro method (e.g., MT models and/or IPs) offer the best in vitro to in vivo correlations5

NGI: Next Generation Impactor

Realistic in vitro APSD test setup8Compendial in vitro APSD test setup7

USP: United States Pharmacopeia
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Commercially Available MT Models

L: Large; M: Medium; S: Small

9

9

10,11

Mouth-throat model 
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Example Experimental Test Setup

Schematic modified from Tavernini S, et al.12
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GDUFA Funded Research on Realistic 
MT Models and IPs

GDUFA: Generic Drug User Fee Amendments 



www.fda.gov 9

Study 1 - Influence of MT models and IPs 
on Total Lung Dose

GDUFA-funded research: Virginia Commonwealth University (Principal Investigator, PI: Michael 
Hindle), Grant #1U01FD0052319

• Total Lung Dose in vitro = TLDin vitro = Drug mass exiting the MT model

• APSDTLDin vitro = the size distribution of drug mass exiting the MT model

• IPs simulated based on reported range of trained 
volunteers13,14

– DPI: Budelin® Novolizer® (200 µg budesonide, Bud) 
– MDI: Ventolin® Evohaler® (100 µg albuterol as sulfate, AS)
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Study 1 - Influence of MT models and IPs 
on Total Lung Dose

Budesonide (200 µg) DPI; weak-strong realistic IPs
• Overall, variance mostly due to flow conditions
• Across VCU models, TLDin vitro appeared to be less 

influenced by IP compared to OPC models
• MT model type can be influential

Albuterol (100 µg as sulfate) MDI; 15-45 L/min
• Overall, variance mostly due to MT models
• Across VCU models, TLDin vitro appeared to be less 

influenced by flow compared to OPC models
• MT model type can be influential

Mean TLDin vitro (µg) of Bud (n≥5; mean values, error bars are SDs) Mean TLDin vitro (µg) of AS (n≥5; mean values, error bars are SDs)
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Study 1 - Influence of MT models and IPs 
on Total Lung Dose

Budesonide (200 µg) DPI; weak-strong realistic IPs
• The four MT groups produced similar in vitro lung 

deposition to in vivo data (general population)

Albuterol (100 µg as sulfate) MDI; 15-45 L/min
• VCU models appeared to produce the most 

comparable range to the in vivo data

Individual TLDin vitro as % metered dose of BUD (solid lines are mean values) Individual TLDin vitro as % metered dose of AS (solid lines are mean values)

Product-specific results suggest the need to include various MT models (e.g., types and/or sizes) 
and IPs to capture patient variability
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FPF<5 µm: Fine particle fraction less than 5 µm

FPF<5 µm as % emitted dose of BDP and FP (n=5; mean values, error bars are SDs)

• Suspension-based MDIs like those containing FP appear 
to be much more sensitive to variations in MT model vs. 
solution-based MDIs, such as BDP MDI

BDP MDI: ~59±9%, Asthmatics; 50-60%, healthy volunteers

FP MDI: ~22%, Asthmatics

Study 2 - Influence of MT models 
on Solution and Suspension MDIs

Internal collaboration between OGD/ORS and the Office of Testing and Research in the Office of 
Pharmaceutical Quality6

• APSD testing with Andersen Cascade Impactor (ACI) at a constant flow rate of 28.3 L/min
– Solution MDI: QVAR® (40 µg beclomethasone dipropionate, BDP)
– Suspension MDI: Flovent® HFA (44 µg fluticasone propionate, FP)

MDI performance, as evaluated by rAPSD studies, could 
be influenced by many factors, such as the type of 

formulation, the geometry, shape, internal space volume, 
and the material used to make the MT models
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Study 3 – Analysis of additional factors 
that influence APSD in MDIs

Me: Metal; Pl: Plastic
1Simulated IPs as described in 

Delvadia R, et al.13

GDUFA-funded research: University of Florida (PIs: Günther Hochhaus, Jürgen Bulitta), Contract 
#75F40119C1015417

Product API(s) Formulation

Flovent® HFA Fluticasone Propionate Suspension

Symbicort® 
Budesonide (Bud), 

Formoterol Fumarate 
Dihydrate (FF)

Suspension

Atrovent® HFA Ipratropium Bromide Solution

Realistic Mouth­
Throat (MT) Models 
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Study 3 - Analysis of additional factors 
that influence APSD in MDIs

• Significant differences in the FPF 
<5 µm obtained with different MT 
models
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Study 3 - Analysis of additional factors 
that influence APSD in MDIs

• Significant differences in the FPF 
<5 µm obtained with different MT 
models

• Increasing trend in FPF<5 µm 
observed with small, medium and 
large MT models for Symbicort- FF 
and Bud
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Study 3 - Analysis of additional factors 
that influence APSD in MDIs

• Significant differences in the FPF 
<5 µm obtained with different MT 
models

• Increasing trend in FPF<5 µm 
observed with small, medium and 
large MT models for Symbicort- FF 
and Bud

• IP (weak, medium and strong) and 
firing point (FP) (0.2 and 0.5 s after 
the start of IP) showed significant 
(p<0.05) effects on FPF<5 µm 

Realistic APSD testing should consider the effect of different experimental conditions, 
particularly the type of MT model, IP and MDI firing point
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Considerations for More Realistic APSD 
Testing – Method Development

Solution 
MDI

Suspension 
MDI

DPI

Study Parameter 

Selection

Lessons Learned:

• Overall, realistic APSD results are product-specific
• Formulation differences can affect results
• Multiple study method parameters can affect results:

• IPs, MT model materials, MDI firing point

Ongoing Questions:

• Are there optimal study design parameters for each 
dosage form?

• Does the method parameter selection depend on how 
realistic APSD study will be used (i.e., standalone 
method or input for in silico methods)?AIT (Me and Pl) 
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Considerations for More Realistic APSD 
Testing – Assessing Patient Variability

• Selection of MT models and IPs should consider how these 
will correlate with in vivo performance (if available)
– In vitro data should target in vivo range for good 

correlation

• Ideally, IPs should be based on patient population 
– Comparative clinical endpoint/pharmacodynamic 

study is conducted on patient population

Ongoing Questions:

• Is there an optimal method for selecting which MT type/size and IPs to use? Is in vivo data always needed or 
can other information be used?

• Is the MT type/size more critical to capture for evaluating patient variability as compared to IP? Does this 
matter based on the dosage form?

In vivo oropharynx and lung deposition as % delivered dose 
of BDP in asthmatic adults (mean values)17-21
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Considerations for More Realistic APSD 
Testing – Appropriate Statistical Methods

• Number of units 
• Number of batches 

Ongoing 
Questions:

• What realistic APSD parameters are the most correlated with in vivo performance?
• What statistical method is appropriate?
• Is there a minimum study size that is sufficient for establishing BE? Does this depend on the 

study purpose (i.e., standalone method or input for in silico methods)?

Realistic APSD 
Performance 

Metrics

• Total Lung Dose 
• MT deposition
• FPF<5 µm
• Impactor-sized mass 

Realistic APSD 
Study Size

• Population BE analysis
– Single analysis on pooled data 
– multiple analyses on MT/IP combinations

Statistical 
Approaches

Establishing 
Bioequivalence
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Summary

• Realistic in vitro APSD testing is currently part of the recommended 
alternative to a CCEP BE study approach for solution MDIs

• Compared to current compendial methods, realistic APSD can provide a 
better prediction of deposition of inhaled particles in the lungs and 
capture patient variability

• Research has demonstrated the importance of product-specific realistic 
APSD for DPIs and MDIs
– Formulation type, IPs, MT models (including model material) and MDI firing 

point have been shown to affect test results

• There are still ongoing questions regarding realistic APSD method 
development, patient variability assessment and the appropriate 
statistical method to use to establish bioequivalence.
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