

Reverse Engineering of Nexplanon® Contraceptive Implant: Physicochemical Properties and In Vitro Drug Release

Ziyue Zhong¹, Angela Ren¹, Nicholas Doluisio¹, William Smith², Bin Qin³, Yan Wang³, Feng Zhang¹

1. University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA

2. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, MD, USA

3. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA

Disclaimer: the content reflects the views of the authors and should not be construed to present FDA's views or policies.

CONTACT INFORMATION: ziyuezhong@utexas.edu

PURPOSE

Nexplanon® is a long-acting implant inserted subdermally to release etonogestrel and prevent pregnancy for up to 3 years.

The implant is a non-biodegradable and flexible rod composed of a solid ethylene vinyl acetate copolymer (EVA) core imbedded with etonogestrel and barium sulfate. Surrounding the core is a rate-controlling EVA membrane (named as "skin"). Composition of Nexplanon® is listed in Table 1 [1]. The implant is manufactured using a co-extrusion process [2] and development of this process was discussed in another poster [3]. The goals of this study are:

- To characterize key physicochemical properties of Nexplanon®.
- To study drug release mechanisms of Nexplanon®.
- To correlate drug release mechanisms with structural properties.

OBJECTIVE(S)

- To determine thickness of the rate-controlling membrane.
- To characterize implant surface morphology.
- To study solid state properties of etonogestrel and barium sulfate in Nexplanon®.
- To apply mathematic models to understand mechanisms of drug release through two ends/skin and correlate them with physicochemical properties of Nexplanon®.

METHOD(S)

Characterization of physicochemical properties:

Property	Images were analyzed using ImageJ 3
Skin thickness	100 μm thick cross section was prepared using cryo-micromtome and analyzed using light microscope.
Surface morphology	Nexplanon® was sputter-coated with gold for 60 s at 40 mA and analyzed using scanning electron microscope (SEM).
Etonogestrel	<ul style="list-style-type: none">• Particle size: Nexplanon® was heated to 150 °C, smeared into a glass slide and analyzed using a hot-stage polarized light microscope.• Solid state property: Nexplanon® was heated to 250 °C under Nitrogen purging condition using a Differential scanning calorimetry (DSC).
Barium sulfate	Nexplanon® was heated to 1000 °C at 20 °C/min using a thermogravimetric analyzers (TGA). The residue was then analyzed using SEM.

Characterization of drug release properties:

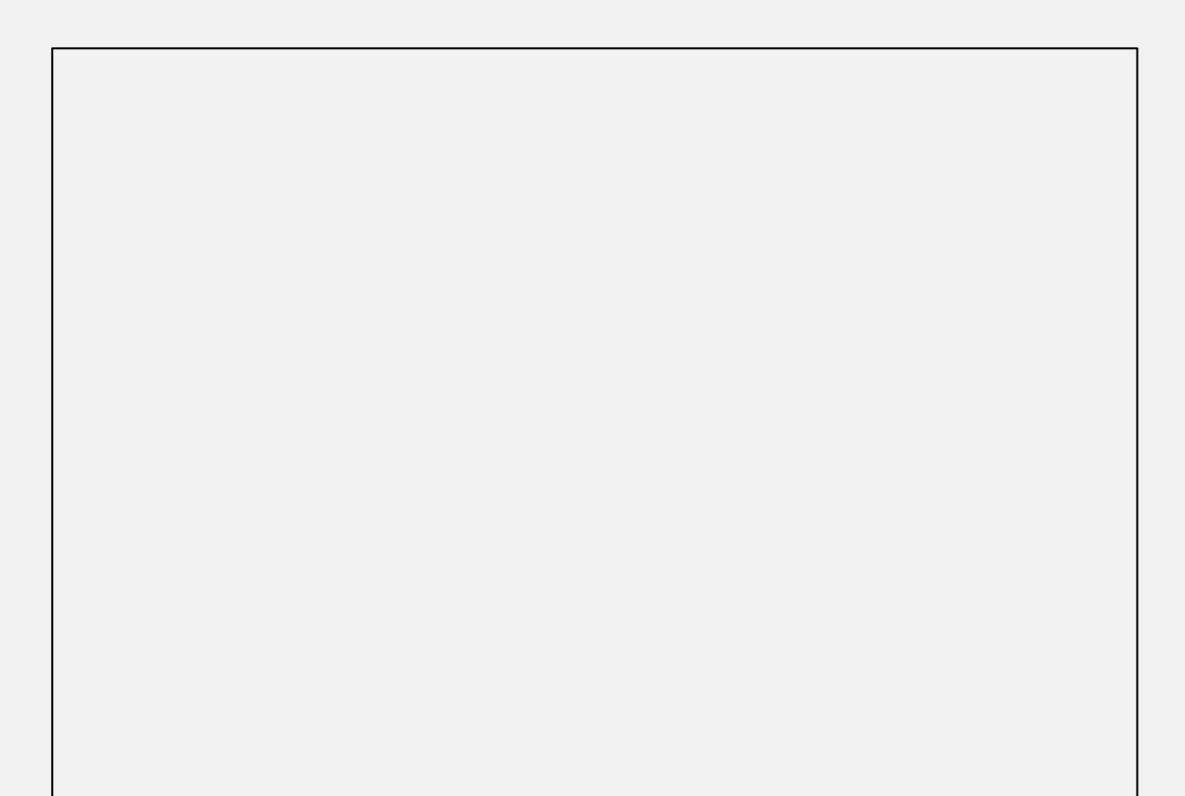
- In-vitro drug release through the skin, the two ends and whole implant were tested in deionized water at 37 °C in a shaker at 150 rpm.
- To test release through only the skin or the two ends, either the ends or the skin was sealed using etonogestrel-impermeable Loctite® 4011 glue, respectively.
- Etonogestrel was assayed using a reverse-phase HPLC method with UV detection.

Analysis of acquired data:

- All data were processed, fitted and plotted using Excel.

RESULT(S)

Figure 1. Cross section and surface morphology of of Nexplanon®.



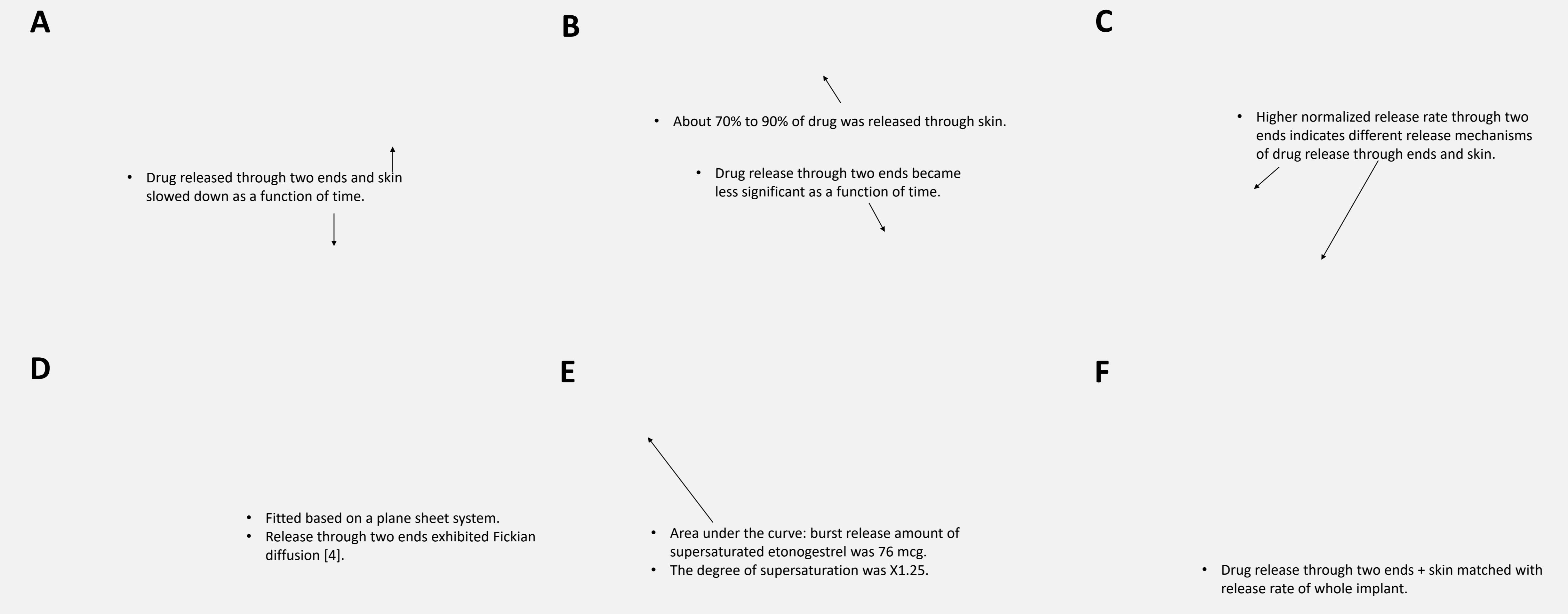

Figure 2. characterization of etonogestrel and barium sulfate.

Table 1. Composition of Nexplanon® [2].

Table 2. Dimension of Nexplanon®.

Figure 5. In-vitro dissolution testing and modelling of drug release mechanisms.

CONCLUSION(S)

Implant structure:

- The thickness of the rate-controlling membrane was 61.0 μm (Table 2).
- The surface of the implant skin was free of drug crystals (Figure 1).
- The two ends were not covered by the membrane and dispersed with etonogestrel particles (Figure 1).

Properties of etonogestrel and barium sulfate:

- The d90 of etonogestrel was 11.9 μm and the d90 of barium sulfate was 3.0 μm (Figure 2).
- 99.5% of etonogestrel was at crystalline state (Figure 2, 3). 0.5% was at solubilized state (of which 0.1% was supersaturated) (Figure 5E).

Drug release mechanisms:

- Drug released through two ends by dissolution and diffusion in EVA 28 matrix (Figure 5D).
- Drug released through skin by diffusion in EVA 15 membrane (Figure 5E).
- About 1.2 mg of burst released etonogestrel was observed at the first 15 days due to the presence of supersaturation of etonogestrel and exposed ends (Figure 5F).
- Drug was predominantly (70% to 90%) released through skin (Figure 5B).
- The apparent release rate through skin was faster than through two ends (Figure 5A) due to the 40 times larger surface area of skin compared to two ends (Table 2).
- The release rate per unit area through two ends was faster than through skin, indicating faster release mechanism through two ends than skin (Figure 5C).
- The total release rate of two ends + skin matched well with release rate of whole implant (unsealed).

REFERENCE

- [1] Nexplanon® product label.
- [2] Veenstra, H. and W. De Graaff, X-ray visible drug delivery device. 2014, US 8,722,037 B2.
- [3] Zhong, Ren, et al. "Development of a coextrusion process to prepare etonogestrel long-acting implant." AAPS 2024
- [4] Korsmeyer, Richard W., et al. "Mechanisms of solute release from porous hydrophilic polymers." International journal of pharmaceutics 15.1 (1983): 25-35.

FUNDING

This work was supported by the Broad Agency Announcement (BAA) Contract #75F40122C00019 from the U.S. Food and Drug Administration (FDA). The content reflects the views of the authors and should not be construed to present FDA's views or policies.