

Blessy Joseph,¹ Dipesh Khanal,^{1,3} Elizabeth Bielski,⁴ Bryan Newman,⁴ Huzeufe Yilmaz,⁵ Snober Ahmed,⁵ Susan Boc,⁴ Hak-Kim Chan³, Mark Banaszak Holl^{1,2}

¹ Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, USA

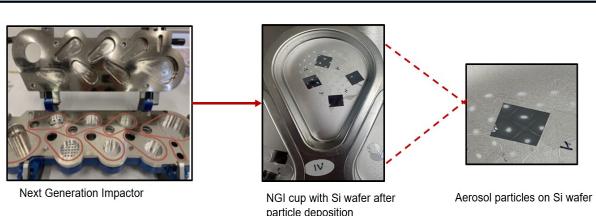
² Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA

³ Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia

⁴ Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA

⁵ Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO, USA

Introduction


- Atomic Force Microscopy coupled with infrared spectroscopy (AFM-IR) is a powerful technique that provides better chemical sensitivity and spatial resolution than conventional vibrational methods.
- AFM-IR can be used to evaluate physicochemical properties of population of aerosolized particles emitted by a dry powder inhaler (DPI) as well as colocalization of particles.

Objective

- Characterize the particle distribution and co-localization of fluticasone (FP), salmeterol (SX), and lactose monohydrate (L) in Advair Diskus 100/50 (FP; SX inhalation powder).
- Obtain consistent chemical maps and infrared spectra.

Materials and Methods

- Deposition of aerosol particles on silicon (Si) wafer using Next Generation Impactor (NGI) with pre-separator at a flow rate of 60 L/min.
- AFM-IR was performed in tapping mode using a gold-coated silicon probe (Model: PR-UM-TnIR-D-10) and a scan rate of 0.2 Hz.

Materials and Methods cont'd.

Icon-IR AFM-IR instrument (Bruker, Santa Barbara, CA, USA) used for analysis.

Results and Discussion

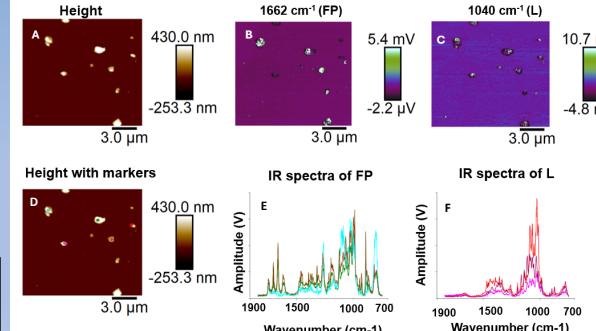


Figure 1 Aerosolized Advair Diskus 100/50 particles collected on a Si wafer substrate within NGI Stage 6 showing FP and L. (A) Height image (B) 1662 cm^{-1} (FP) intensity chemical map, (C) 1040 cm^{-1} (L) intensity chemical map, (D) height map showing the regions for spectral acquisition, (E) IR spectra of FP, and (F) IR spectra of L.

Results and Discussion cont'd.

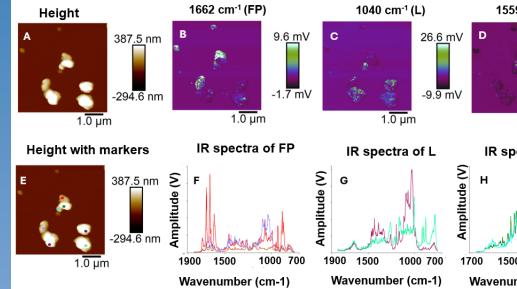


Figure 2 Aerosolized Advair Diskus 100/50 particles collected on a Si wafer substrate within NGI Stage 6 showing FP, L and SX. (A) Height image, (B) 1662 cm^{-1} (FP) intensity chemical map, (C) 1040 cm^{-1} (L) intensity chemical map, (D) 1559 cm^{-1} (SX) intensity chemical map, (E) height image showing locations of spectral acquisition, and (F-H) selected IR spectra of FP, L, and SX.

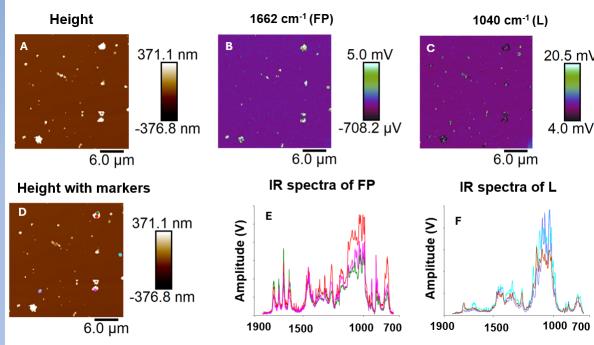


Figure 3 Aerosolized Advair Diskus 100/50 particles collected on a Si wafer substrate within NGI Stage 7. (A) Height map, (B) 1662 cm^{-1} (FP) intensity chemical map, (C) 1040 cm^{-1} (L) intensity chemical map, (D) height map showing the regions for spectral acquisition, (E) IR spectra of FP, and (F) IR spectra of L.

Results and Discussion cont'd.

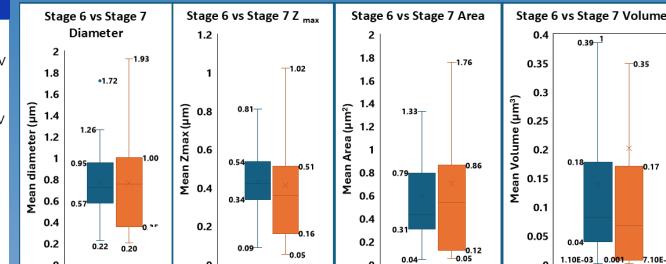


Figure 4 Comparison of particle sizes on NGI Stage 6 (S6) and Stage 7 (S7) via box-and-whisker plots: (A) S6 vs. S7 diameter, (B) S6 vs. S7 particle height (Z_{max}), (C) S6 vs. S7 Area, and (D) S6 vs. S7 Volume (total of 60 particles considered from single NGI run [$n=60$]; two Si wafers each from S6 and S7; Plot line: median, X: mean, box: lower 25% and upper 75% quartiles, whiskers: min and max values).

Summary

- The chemical maps are consistent with IR spectra.
- FP colocalized with L (Fig 1-Fig 3), and FP together with SX also colocalized with L (Fig 2).
- The average particle heights were $0.42\text{ }\mu\text{m}$ and $0.356\text{ }\mu\text{m}$ for S6 and S7, respectively ($p=0.41$).
- The average diameters of the particles were $0.72\text{ }\mu\text{m}$ and $0.75\text{ }\mu\text{m}$, respectively ($p=0.45$).
- S6 volumes ($0.082\text{ }\mu\text{m}^3$ avg) are slightly larger than S7 ($0.067\text{ }\mu\text{m}^3$ avg) (p -value 0.14), more particles are needed to test convergence of mean and dispersion values.

Reference

- Khanal D, Zhang J, Ke W-R, Banaszak Holl MM, Chan H-K. Anal Chem. 2020;92:8323–32.

Acknowledgments

- U.S. Food and Drug Administration (FDA) through Contract 75F40122C00202.