

Validation of HILIC-HRMS Method for Quantitative Oligonucleotide Analysis

Md Rabiul Islam; A M Abdullah; Cynthia Sommers; Jason Rodriguez; Deyi Zhang[#]; Darby Kozak[#]; Kui Yang

Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, MO
 #Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD

Introduction

Synthetic oligonucleotide therapeutics (ONTs) are an emerging class of drugs that shows a great potential to target previously considered undruggable diseases by modulating gene expression through interacting with mRNA at molecular level (Figure 1). Solid phase synthesis of ONTs consists of repetitive synthetic cycles, each including multiple steps (Figure 2). Failure in any steps during synthesis as well as degradation of final products during storage may contribute to formation of impurities that may potentially impact their physicochemical properties, efficacy and safety. ONTs pose unique regulatory challenges, which is largely attributed to the molecular complexity present in both intended full-length product (FLP) and product-related impurities. Recently, we developed a HILIC-HRMS method for oligonucleotide analysis (J Mass Spectrom 2022; 57(4):e4819). In this study, this method was validated following regulatory guidances: Guidance for Industry M10 *Bioanalytical Method Validation and Study Sample Analysis* (ICH 2022), and Guidance for Industry Q2(R1) *Validation of Analytical Procedures: Text and Methodology* (FDA 2021, ICH Q2(R1) 2005).

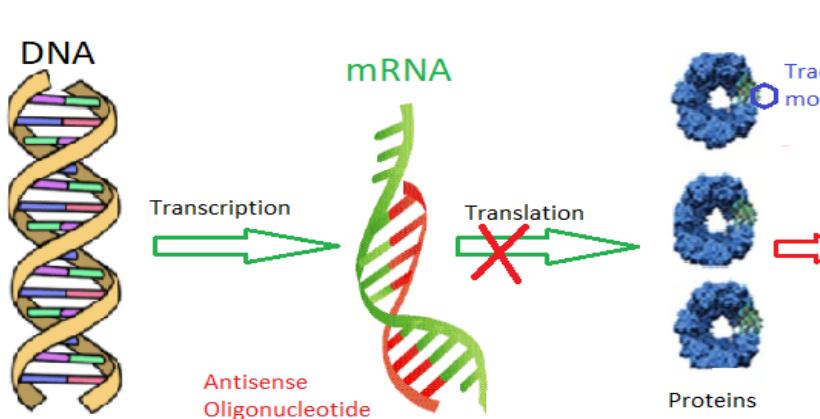


Fig 1. ONT as modulator of gene expression

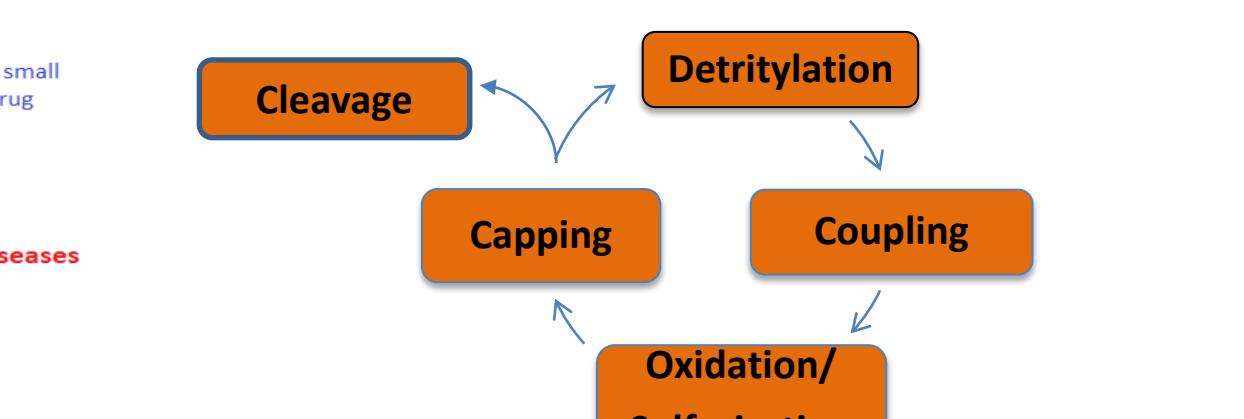


Fig 2. Synthetic cycles of phosphorothioated ONTs

Materials and Methods

- LC-MS Instrument
- HILIC column: Shodex HILICpak VN-50 2D, 2.0x150 mm, 5 μ m, 100 \AA
- Mobile phases A (MPA) and B (MPB): 70/30 (v/v) and 30/70 (v/v) water/acetonitrile with 20 mM NH4Ac, respectively. pH adjusted to 5.5. Gradient: 0-1 min 10%, 1-10 min 10-25%, and 10-12 min 25% MPB.
- FLP with the same nucleotide sequence and modifications as nusinersen and representative common impurities (Table 1) were custom synthesized by GenScript at HPLC grade (purity \geq 90%) and used as is.

Table 1. Custom synthesized oligonucleotide sequences

Sample type	Sample name	Sequence
FLP (18-mer)	FLP	5'-TCACTTTCATAATGCTGG-3'
PO impurity (18-mer)	PO	5'-TCACTTTCAT*ATGCTGG-3' where phosphorothioate (PS) linkage * was replaced with phosphodiester (PO) linkage
n-1 impurity (17-mer)	n-A	5'-TCCTTTCTATAATGCTGG-3'
n+1 impurity (19-mer)	n+A	5'-TCAACTTTCATAATGCTGG-3'
n-2 impurity (16-mer)	n-2	5'-ACTTTCATAATGCTGG-3'

Data Processing

- LC-MS data were processed by BioPharma Finder (BPF) 4.1 (Thermo Scientific) Intact Mass workflow for deconvolution, and Xcalibur qual browser (Thermo Scientific) for extracted ion chromatogram (EIC).
- The most prominent adduct ion observed was K⁺ adduct. The ratio of K⁺ adduct ion to deprotonated ion was consistent among the tested samples. Quantitation by deconvolution using their sum intensity vs the intensity of deprotonated ion displayed no significant difference in % CV for all the tested concentration levels.
- Quantitation by EIC with an extraction window covering top 8 isotopic peaks vs by deconvolution displayed no significant difference in % CV for most of the tested concentration levels, with a slightly better % CV for the low concentration end.
- Intensity of deprotonated ion by deconvolution was used in quantitation below.

Results and Discussion

1. Calibration curve range and linearity

- Equal molar mixtures of 5 tested oligonucleotide samples at varied concentration levels ranging from 0.005 to 5 pmol/ μ L (i.e., equivalent to column loads from 0.01 to 10 pmol at a fixed injection volume of 2 μ L) were used to generate the calibration curves. Two repeated runs were performed on different days.
- The calibration curves showed excellent linearity with $R^2 > 0.999$ for all 5 tested compounds for both runs. The results from Run 1 are shown in Figure 3.

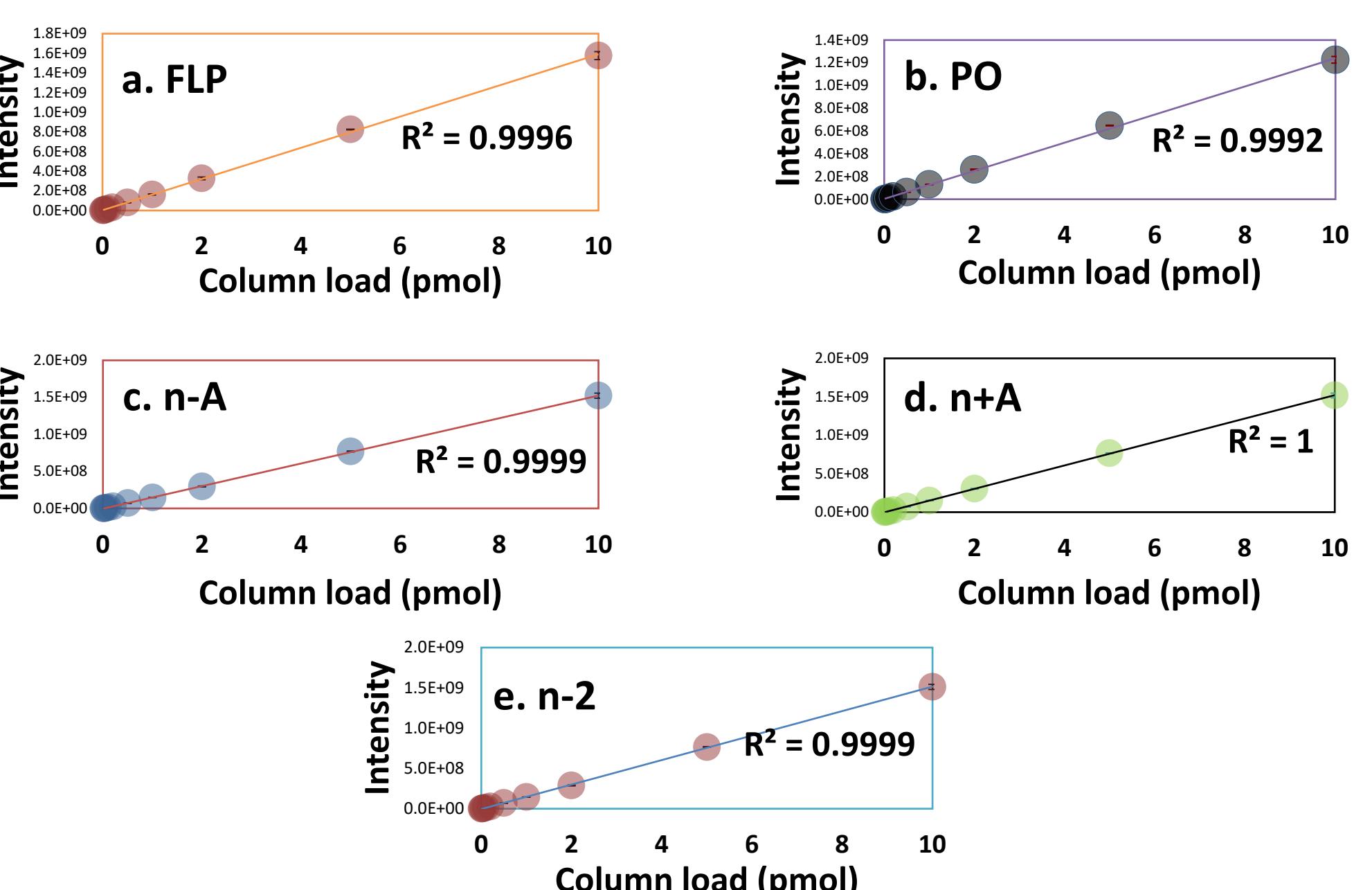


Fig 3. Calibration curves. (a) FLP, (b) PO, (c) n-A, (d) n+A, and (e) n-2

2. Precision – cont.

2. Precision – cont.

Table 3. Intensities and % CV of LC-MS data acquired for the lowest column load tested (0.01 pmol) on two separate runs for all 5 compounds

Compounds	1st run		2nd run		In-between runs	
	Avg. intensity	% CV	Avg. intensity	% CV	Avg. intensity	% CV
FLP	8.34E+05	6.41	9.26E+05	9.80	8.80E+05	9.76
PO	5.47E+05	10.81	6.33E+05	14.19	5.90E+05	14.42
n-A	7.28E+05	8.43	8.24E+05	4.48	7.76E+05	8.98
n+A	4.64E+05	11.95	5.79E+05	7.01	5.22E+05	14.50
n-2	8.99E+05	3.33	9.83E+05	3.65	9.41E+05	5.733

3. Accuracy

- To evaluate the accuracy, linear regression equations were first obtained from calibration curves (Figure 3) and summarized in Table 4. Grand average value from two separate runs for all tested compounds (FLP and 4 representative impurities) showed a % CV within 10% for slope and within 20% for intercept, indicating a species-independent linear relationship of peak intensity vs column load for the tested 16-mer to 19-mer sequences.
- The regression equation of each run was then used to back calculate column loads and compare to the true column loads for % Recovery at different concentration levels for two separate runs. FLP data as a representative example in Table 5 (the % Recovery maximally deviated were in bold) showed % Recovery deviation was within \pm 6%.
- % Recovery deviated from the nominal concentrations were within \pm 15% for all tested compounds within the entire range of 0.01-10 pmol (% Recovery maximally deviated listed in Table 6).

Table 4. Linear regression equations* for all 5 compounds

Slope	FLP	PO	n-A	n+A	n-2	Grand Avg.
1st run	1.62E+08	1.28E+08	1.49E+08	1.50E+08	1.47E+08	
2nd run	1.73E+08	1.38E+08	1.60E+08	1.59E+08	1.57E+08	(1.52 \pm 0.13) E+08
% Difference between runs	6.57%	7.52%	7.12%	5.83%	6.58%	% CV: 8.44%
Intercept	1st run	-8.60E+05	-7.98E+05	-9.15E+05	-1.20E+06	-7.45E+05
2nd run	-8.22E+05	-7.68E+05	-8.85E+05	-1.16E+06	-7.11E+05	(-8.86 \pm 1.67) E+05
% Difference between runs	4.52%	3.83%	3.33%	3.39%	4.67%	% CV: 18.9%

*: Log values of calibration curve data were used to generate regression equations.

Table 5. % Recovery at different column loads on two separate runs for FLP

Column Load (pmol)	1st run			2nd run		
	Avg. intensity	% CV	Avg. intensity	% CV	Avg. intensity	% CV
0.01	8.34E+05	6.41	9.26E+05	9.80	8.80E+05	9.76
0.02	2.20E+06	4.78	2.49E+06	2.83	2.35E+06	7.48
0.05	7.20E+06	1.22	8.07E+06	4.14	7.64E+06	6.70
0.1	1.54E+07	0.59	1.67E+07	0.95	1.61E+07	4.19
0.2	3.13E+07	2.03	3.33E+07	4.62	3.23E+07	4.73
0.5	8.02E+07	2.04	8.46E+07	3.30	8.24E+07	3.81
1	1.62E+08	3.41	1.79E+08	0.34	1.71E+08	5.42
2	3.26E+08	4.27	3.51E+08	2.37	3.39E+08	4.99
5	8.25E+08	0.48	9.02E+08	1.07	8.63E+08	4.72
10	1.58E+09	2.63	1.63E+09	1.47	1.60E+09	2.63

3. Accuracy – cont.

Table 6. % Recovery maximally deviated from the nominal concentrations observed for all 5 compounds on two separate runs

Compounds	1st run		2nd run	
	Column Load (pmol)	% Recovery	Column Load (pmol)	% Recovery
FLP	0.02	94.50	10	94.03
PO	0.02	93.43	10	93.61
n-A	0.01	109.95	0.01	107.08
n+A	0.01	111.03	0.01	109.09
n-2	0.01	112.14	0.01	107.81

4. LLOQ

- LLOQs are determined based on linearity, precision and accuracy by meeting criteria including % CV within 20%, and accuracy (% Recovery) within 20% deviated from nominal concentration.
- Based on calibration curve linearity (Figure 3), precision (Tables 2 and 3), and accuracy (Tables 5 and 6), a LLOQ at a column load of 0.01 pmol was determined for all 5 tested compounds including FLP and 4 common impurities when examined with equal molar mixtures.

5. Specificity

- Specificity was evaluated by comparing peak area of a specific compound at LLOQ level with that in a blank sample.
- By extracted ion chromatograms (EICs) of 5 tested compounds, no detectable peaks at expected retention times were observed for blank samples, which confirms the method specificity.

Conclusions

- A HILIC-HRMS method developed for quantifying oligonucleotides was validated for calibration curve range, linearity, precision, accuracy, sensitivity, and specificity following regulatory guidances.
- A model molecule representing therapeutic oligonucleotides (i.e., an 18-mer RNA with modifications of nusinersen) was used in the study. The developed method is sensitive and accurate for the analysis of the full-length product and its common product-related impurities including structurally closely related impurities.
- Future studies will address the impact of coexisting high-level full-length product and other coelutes, and the potential matrix effects from excipients in drug product formulation.

Acknowledgement

- FDA Critical Path research program (K.Y.)
- ORISE fellowship (M.R.I.), co-mentored by A.M.A. and K.Y. (OTR) and D.Z. (OGD), supported by an appointment to the Oak Ridge Institute for Science and Education (ORISE) Research Participation Program at the Center for Drug Evaluation and Research administered by the ORISE through an agreement between the U. S. Department of Energy and U.S. FDA.
- This poster reflects the views of the authors and should not be construed to represent FDA's views or policies.
- The mention of trade names, commercial products, or organizations is for clarification of the methods used and should not be interpreted as an endorsement of a product or manufacturer.

Disclaimer