

Evaluation Permeation and Leachable Characteristics in Metered Dose Inhalers

Patrice Behem¹, Aurore Paul¹, Gregoire Deraime¹, Veronika Hegrová², Radek Dao², Liangfeng Han³, Elizabeth Bielski³, Bryan Newman³ & Jagdeep Shur⁴

¹Aptar Pharma, 27100 Le Vaudreuil, France

²NenoVision s.r.o., Brno, Czech Republic

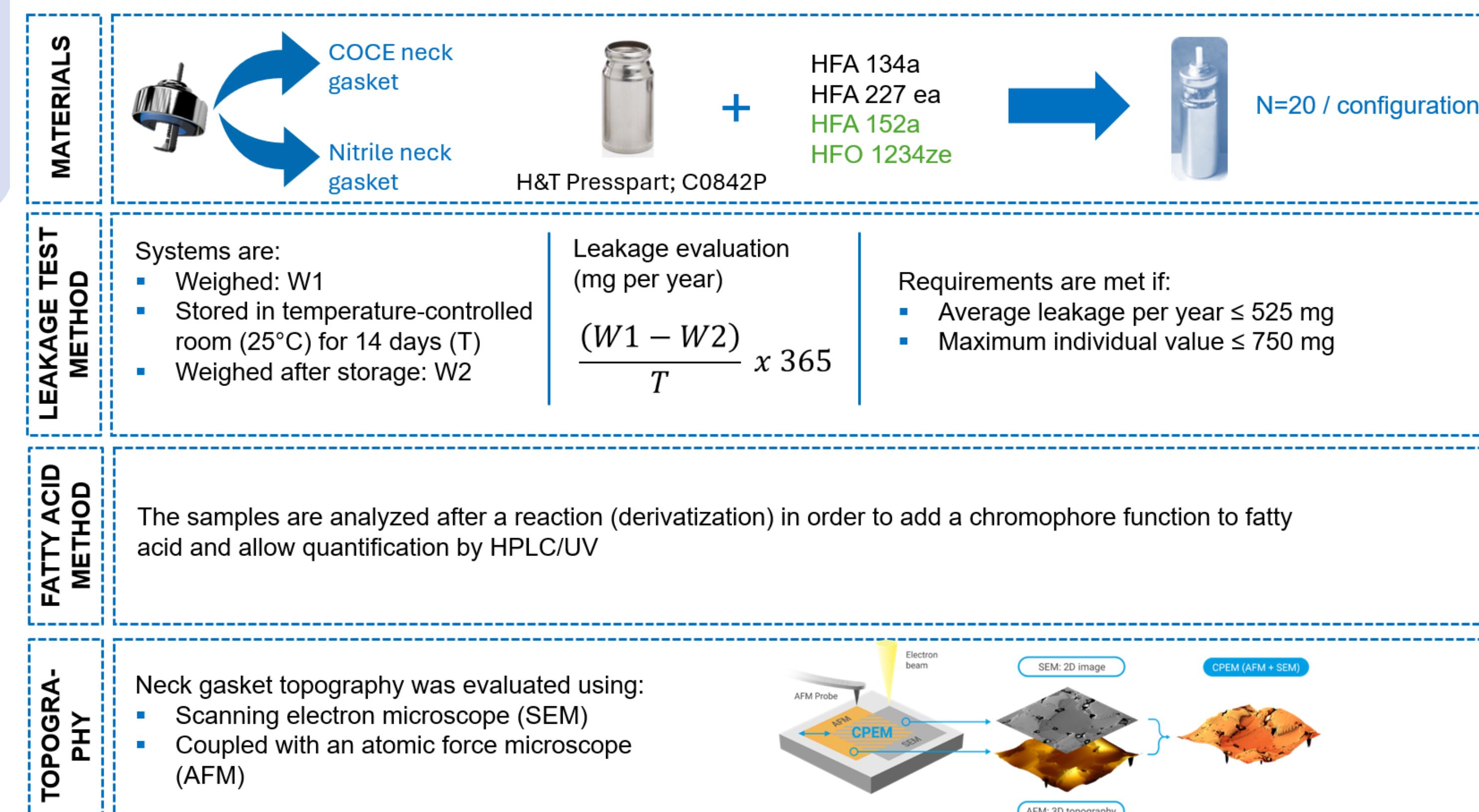
³Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

⁴Theela Life Sciences, Theela House, Bath, BA1 5PH, UK

Key Message

COCE (cyclic olefin copolymer with unique properties) valves demonstrate significantly lower leakage rates compared to nitrile valves due to their lower dipole moments and less polar structure, making them ideal for applications requiring minimized permeation and leachables.

Introduction


This study aimed to explore the relationship between the dipole moments of elastomers and their permeation characteristics, focusing on the performance of cyclic olefin copolymer (COC) and nitrile valves in metered dose inhalers (MDIs) [1]. The ability of a material to prevent permeation and minimize leachables is critical in many industrial applications, particularly in the field of inhaled drug delivery where the integrity and efficiency of the delivery system are paramount. Permeation through valve materials can lead to significant loss of propellants and active ingredients, compromising the efficacy of the drug delivery system [2].

Understanding leachable characteristics is equally important as they directly affect the safety and efficacy of the drug product. Leachables can migrate from the elastomeric components into the drug formulation, potentially causing adverse reactions or affecting the stability and performance of the drug [3]. Therefore, evaluating the interactions between elastomers and propellants, and their impact on both permeation and leachables, is essential for optimizing the design and selection of materials used in MDIs [4].

COCE is known for its low-loss characteristics at high frequencies and a low mechanical loss factor, indicating a moderate to low dipole moment [2]. These properties suggest limited interactions with polar molecules, potentially reducing permeation. In contrast, nitrile polymers typically exhibit higher dipole moments due to the presence of polar nitrile groups ($-C\equiv N$), which can enhance interactions with polar permeants and increase permeation rates.

The dipole moment measures the polarity of a substance, determined by the distance between charged ions. When the polarity of the solvent and the seal are similar, diffusion rates increase, while dissimilar

Materials and Methods

Results and Discussion

Static Leakage & Fatty acids

To visualize the difference in leakage rates, the following graph (Figure 1) illustrates the mean yearly loss for various propellants in both COCE and nitrile valves. Table 1 summarises the fatty acid extractable levels from different propellant and elastomer systems.

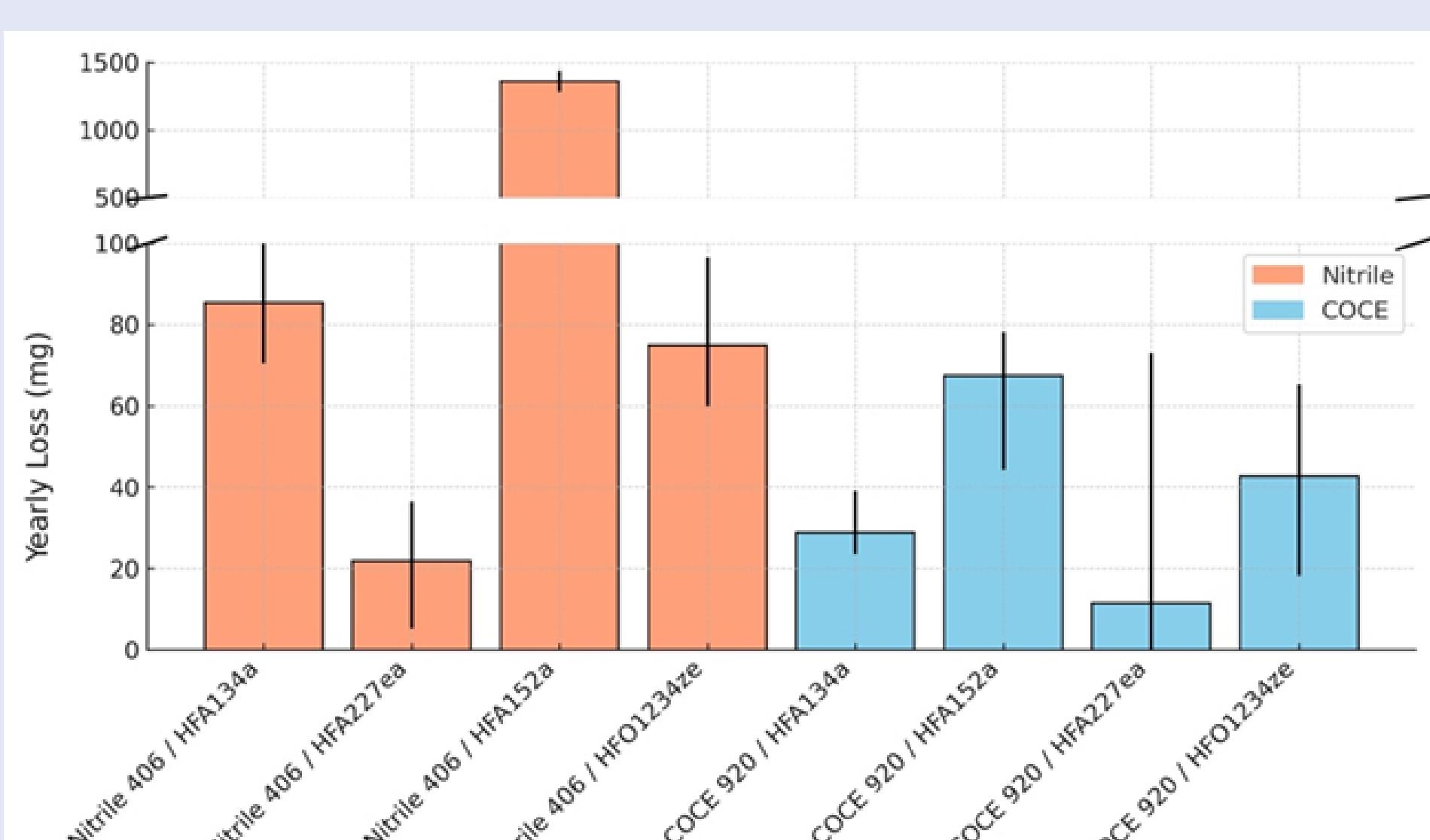


Figure 1 – Yearly loss distribution (mg) for different propellants, comparing Nitrile and COCE neck gaskets. Bar graph shows mean \pm standard deviation (N=20)

Moreover, fatty acids extracted from COCE valves are lower than ones from nitrile valves (see typical values obtained from both configurations in the Table 1). This level of fatty acids that can be extracted from the valve is an important factor to consider when selecting valve raw materials. Indeed, fatty acids can directly impact MDI performance or leachables obtained.

	mg/valve	
	Nitrile valve	COCE valve
Total fatty acids	2.5	0.1

Table 1 – Typical fatty acid values obtained

Integrated SEM/AFM (Scanning Electron Microscope/Atomic Force Microscope) imaging data

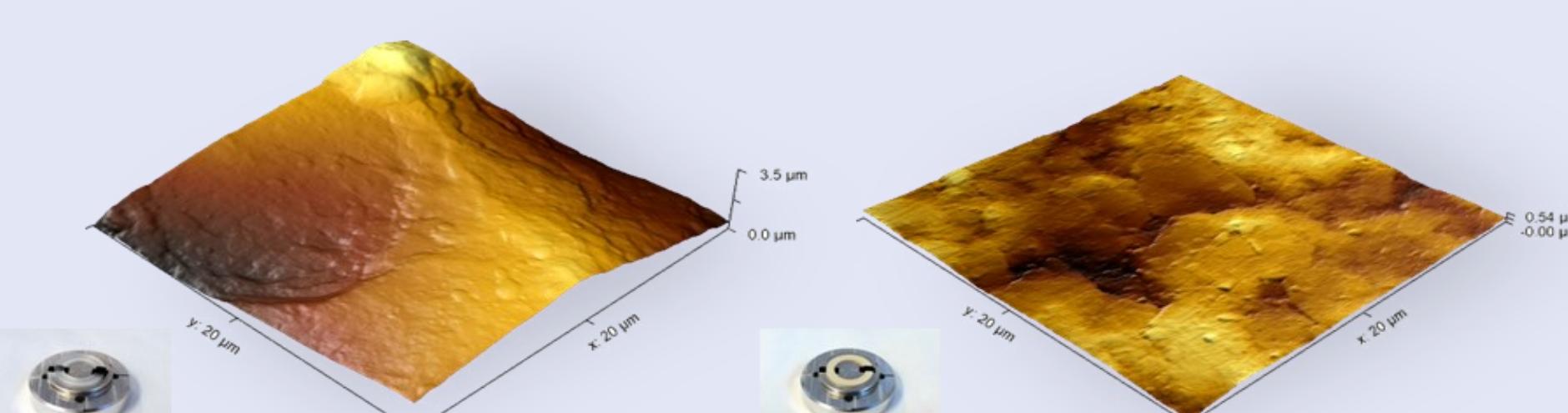


Figure 2 – Surface topography images analysed by integrated SEM/AFM technology of COCE neck gasket (left) and nitrile neck gasket (right).

Integrated SEM/AFM imaging data revealed significant differences in the surface topography and material properties of the two gaskets, directly correlating with their leakage performance (Figure 2). The nitrile gasket exhibited a rough, scale-like surface structure, leading to increased surface area and greater interaction with gas molecules, which contributed to its higher permeation rates. In contrast, the COCE gasket displayed a more corrugated but smoother surface, which reduced the effective contact area between the gasket and the gas molecules. This limited direct interaction with propellants, combined with the material's higher stiffness, minimised molecular diffusion and reduced gas permeation. These surface characteristics may explain the observed lower leakage rates for COCE compared to nitrile, demonstrating COCE's superior performance in applications requiring minimal leakage and high barrier properties.

Conclusions

- The study highlighted the differences in propellant leakage observed between nitrile and COCE valves. The lower dipole moment and less polar structure of COCE appear to reduce its interaction with polar permeants, leading to significantly lower permeation rates. Additionally, the measured differences in total fatty acid content between nitrile and COCE valves highlight the product quality implications with valve selection when manufacturing MDI products with different propellant formulations.
- The data suggests that using COCE as a valve material can result in measurable reductions in the loss of propellants, such as HFA 152a and HFA 134a, thereby which may enhance the overall efficiency and reliability of the drug delivery system. This finding is particularly relevant for the development of next-generation inhalers and other delivery devices where minimizing drug loss is essential.

Acknowledgements

- Funding for this work was made possible by the U.S. Food and Drug Administration (FDA) through Contract 75F40123C00186; views expressed in this publication are from the authors only and do not necessarily reflect the FDA's official views or policies nor does any mention of trade names, commercial practices, or organization imply endorsement by the U.S. Government.
- Thank you to H&T Presspart for canister procurement for filling step.

References

- [1] Davies, R., Paton, J. Y., Behnia, S., Wildhaber, J. H., & O'Callaghan, C. Evaluation of different aspects of drug delivery from metered dose inhalers. *International Journal of Pharmaceutics*, 2002, 245(1-2), 1-10.
- [2] Peytavit, E., Donche, C., Lepilliet, S., Ducournau, G., & Lampin, J.-F. (2011). Thin film transmission lines using cyclic olefin copolymer. *International Conference on Infrared, Millimeter, and Terahertz Waves*.
- [3] Thompson, D. O., Schlech, B. A., Summers, C. W., & Chess, J. T. A Study of the Effects of Valve Materials on the Permeation Rates of Propellants in MDIs. *Pharmaceutical Research*, 2010, 27(4), 623-631.
- [4] Brooks, G. T., Hagan, P. A., & Rubio, J. R. Impact of Elastomeric Components on the Stability and Performance of Metered Dose Inhalers. *Journal of Aerosol Medi-*